Molecular Biology
MSc/PhD Program

www.gpmolbio.uni-goettingen.de

YEARBOOK 2017 / 2018
MSc/PhD Molecular Biology Program
at the University of Göttingen

International Max Planck Research School
Letter from the President

Success for a comprehensive research university such as our Georg-August University of Göttingen is rooted in excellent science and its integration into an optimal learning environment to educate competent and critical young academics. I am very glad that our university in cooperation with the local Max-Planck Institutes and the German Primate Center has been able to establish conditions, which make top interdisciplinary science possible in an international setting enabling us all to feel the Göttingen Spirit.

The two international MSc/PhD programs in Molecular Biology and Neurosciences truly have contributed to our continued strive for excellence in science-oriented training both by integrating faculty members from university and non-university institutes across institutional borders and by providing comprehensive services especially for international students on the Göttingen Campus. Based on the proven concepts and the experience of these programs the Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) was established, which is continuously supported by the federal Excellence Initiative since 2007.

The Molecular Biology and Neuroscience programs remain unique within the Graduate School GGNB in offering integrated MSc/PhD curricula with a fast track option which allow excellent BSc graduates to directly enter the PhD phase after successfully absolving the initial 1st year training phase. For more than 15 years these international programs have been particularly successful in attracting high numbers of worldwide applicants of good academic quality providing the basis for the selection of the very best candidates. New ideas introduced by these programs have meanwhile been adopted by the Georg-August University School of Science (GAUSS) and other graduate schools for the benefit of the entire university.

While maintaining their successful structure the content and focus of the training curriculum of the programs has continuously been adapted to the changing research topics. Consequently, new faculty members are integrated to reflect novel developments in research. They will further ensure optimal individual supervision and up-to-date research-oriented training. Beyond academia both programs keep close contact with the relevant industries to enhance the opportunities of the graduates for a successful professional career in the private sector.

I would very much like to thank all colleagues and institutions for their committed support of these international programs and, last but not least, the German Academic Exchange Service (DAAD), the Lower Saxony Ministry of Science and Culture, and the various generous donors. The Georg-August University of Göttingen will continue to support these programs to promote international exchange at all levels and for further interaction with our partners worldwide.

Prof. Dr. Ulrike Beisiegel

(President of the Georg-August University of Göttingen)
Letter from the Max Planck Society

The mission of the Max Planck Society is to conduct basic research in science and humanities at the highest level. More than 80 Max Planck Institutes are located on scientific campuses across Germany, most of them close to universities.

Scientific ties between Max Planck Institutes and universities are traditionally strong. In 1998, during the 50th year celebration of the Max Planck Society in Göttingen, the Max Planck Society, together with the Hochschulrektorenkonferenz, launched the International Max Planck Research Schools as a new joint program to further intensify cooperation.

The goals of the International Max Planck Research Schools are

- to attract excellent students from all around the world to intensive Ph.D. training programs in Germany, preparing them for careers in science,
- to integrate Max Planck scientists in top-level scientific training of junior scientists,
- to intensify the ties to the universities owing to the participation of internationally renowned Max Planck scientists in joint teaching activities, and
- to strengthen international relationships by providing individual support to each student and by exposing foreign students to German culture and the German language.

By now, 66 International Max Planck Research Schools have been established involving 72 Max Planck Institutes, 35 German universities and 26 universities abroad. About 3,200 PhD students from 120 countries are presently enrolled.

Since their foundation in the year 2000, the Göttingen International Max Planck Research Schools in Molecular Biology and Neuroscience have met extraordinary success. Every year, the programs receive hundreds of applications, with the quality of the students consistently being very high. Most students graduated so far have moved on to postdoctoral positions, many at prestigious international institutions. In the past years, the Göttingen Schools received unanimous acclaim during external evaluations and won national awards. For instance they are the only Life Science Programs within Germany that were selected for the “Top Ten International Master’s Degree Courses 2006”. The Schools have also re-shaped the local scientific community, strengthening the ties between the participating institutions, and initiated new scientific collaborations that augment the international reputation of Göttingen as a center of scientific excellence. Furthermore, the Schools served as role models and founding members of the Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, thus being instrumental for the continued support by the German Excellence Initiative provided to the university. We hope that in the years to come the students of the International Max Planck Research Schools will be successful in their professional careers. We also hope that they will remember their training period in Göttingen as an exciting and stimulating phase in their lives.

Martin Stratmann
President
Max Planck Society

Marina Rodnina
Dean of the IMPRS
Molecular Biology
Overview

This yearbook is intended to provide information on the international MSc/PhD Molecular Biology Program in Göttingen, Germany, which was established in the year 2000 as a joint venture of the University of Göttingen and its non-university partners. It is also supported by the Max Planck Society as an International Max Planck Research School (IMPRS). In addition to general information on the program, the yearbook introduces the MSc students of the 2017/18 class, the faculty members, the program committee and the coordination team.

The program belongs to the Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), which is funded by the Excellence Initiative of the German Federal and State Governments. It is offered by the Göttingen Center for Molecular Biosciences (GZMB), the Max Planck Institute for Biophysical Chemistry, the Max Planck Institute for Experimental Medicine, and the Leibniz Institute of Primate Research (German Primate Center). Further to their active participation in the Molecular Biology Program and the research activities of the GZMB, the above-mentioned partners closely cooperate in several research alliances, collaborative research centers, and interdisciplinary doctoral programs.

The intensive, research-oriented curriculum of the International MSc/PhD Molecular Biology Program qualifies students for professional work in the fields of molecular and cellular biosciences. The program is open to students from Germany and from abroad, who hold a Bachelor's degree (or equivalent) in the biosciences, chemistry, medicine, or related fields. Scholarships are available. All courses are held in English. The academic year starts in October and is preceded by a three-week orientation program. Applications may be submitted until January 15 of the year of enrollment. To ensure a high standard of individual training, the number of participants is limited to 20 students per year.

All students initially participate in one year of intensive course work. This first segment of the program comprises lectures, tutorials, seminars, methods courses, training in professional skills, and individually supervised research projects (laboratory rotations). The traditional German structure of academic semesters is not followed. The condensed schedule allows students to accumulate 90 credits (ECTS) within one year, which would normally require three semesters.

Subsequently, two separate segments are offered:

- **PhD Program:** Good to excellent results after the first year qualify for direct admission to a three-year doctoral project in one of the participating research groups. The Master's thesis requirement is waived in this case. After successful defense of a doctoral thesis, the degree Doctor of Philosophy (Ph.D.) or the equivalent title *Doctor rerum naturalium* (Dr. rer. nat.) is conferred.

- **MSc Program:** Alternatively, students may conclude the program with a Master's thesis, based on six months of experimental scientific research. The degree Master of Science (MSc) is awarded upon successful completion of the Master's thesis.
Intensive Course Program (First Year)

Throughout the first year, current topics in molecular biology are covered by
- lectures
- tutorials
- methods courses
- laboratory rotations
- seminars

Lectures and Tutorials

A comprehensive lecture series is offered in a sequence of 6-12 week units. The following topics are taught at an advanced level throughout the first year (36 weeks, 4 hours per week):

Module M.MolBio.11: DNA and Gene Expression
- architecture of the cell
- DNA and chromatin structure, epigenetics
- DNA replication and repair
- transcription, RNA splicing, RNA quality control
- RNA-based regulation of prokaryotes and eukaryotes
- translation, protein structures and folding, posttranslational modification
- enzyme mechanisms and regulation

Module M.MolBio.12: Metabolic and Genetic Networks
- basic metabolism, metabolic networks
- biological membranes
- photosynthesis
- signal transduction
- genomics, microbiomes

Module M.MolBio.13: Cell Biology / Immunology / Neuroscience / Developmental Biology
- biosynthesis of organelles, nucleocytoplasmic transport
- protein sorting and processing, membrane traffic
- ubiquitin, autophagocytosis
- cytoskeleton, cell adhesion
- immunology, infectious diseases, principles of pathogenicity
- cell cycle, meiosis, apoptosis, cancer
- neurons, synapses, synaptic transmission
- glial cells and brain vasculature
- nervous systems, sensory systems
- developmental biology

Module M.MolBio.14: Model Systems / Biotechnology
- stem cells
- fungi, Arabidopsis, Drosophila
- C. elegans, Xenopus, zebrafish, mouse
- non-human primate models, use in primate research
- molecular evolution
- biotechnology (bacteria, fungi, plants, insects)

Each lecture is accompanied by a tutorial session, where students meet with a tutorial in small groups. Tutorials involve exercises, review of lecture material, and a discussion of related topics.
Methods Courses

During the first two months of the Molecular Biology Program, students participate in a series of methods courses to introduce them to principles and practical aspects of basic scientific techniques and the handling of model organisms. During the first two weeks, two 4-day projects with proteins and nucleic acids introduce various basic and advanced techniques. Weeks 3 and 4 provide an overview over various aspects of bioinformatics. Weeks 5 to 7 comprise six 2-day experiments on a variety of different methods indicated below. In addition, students are offered a choice of two (out of four) 5-day special courses with an integrated concept of lectures and hands-on experiments as indicated below. Prior to the course program, students get introduced to programming in R and basis statistics.

Introductory 4-day methods courses (week 1-2)
- proteins
- DNA

Bioinformatics courses (week 3-4)
- next generation sequencing, NGS analysis with R
- protein bioinformatics
- comparative sequence analysis, phylogeny
- gene ontologies & biological networks
- advanced biological networks

Introductory 2-day methods courses (week 5-7)
- analysis or protein-protein and nucleic acid-protein interaction
- RNA analysis
- light microscopy
- analysis of cellular compartments
- cell culture
- expression analysis

Special 5-day methods courses (week 7-8)
- X-ray crystallography
- (3-D-cryo) electron microscopy
- NMR spectroscopy
- mass spectrometry / proteomics

Professional Skills in Science

Additional training is offered in four separate units to prepare the students for professional scientific communication and good scientific practice:
- scientific writing and graphics
- oral presentation of scientific results
- laboratory safety
- good scientific practice

Laboratory Rotations

Starting in January, every student conducts three independent research projects (laboratory rotations) in the participating departments. Each project is individually supervised. It involves seven weeks of experimental work, followed by one week for data analysis and presentation. For each project, a report must be completed in the format of a scientific publication. The laboratory rotations cover three different research areas and methods.
Seminars
Seminars start in March. The class meets weekly for two hours to discuss student presentations. The presentations are research reports based on work from the laboratory rotations.

Examinations
After the first year of intensive training, all students take one written and two oral Master's examinations. The Master's examinations explore the students' theoretical background in topics covered by lectures and tutorials. Each oral examination investigates the qualification in selected topics of the molecular life sciences.

PhD Program
Students who have passed the Master's examinations with good or excellent results qualify for direct admission to a three-year doctoral project in one of the participating research groups without being required to complete a Master's thesis first.

The PhD program emphasizes independent research by the students in the group of a faculty member. The PhD students select three independent faculty members as their thesis advisory committee who closely monitor progress and advise the students in their research project. Laboratory work is accompanied by seminars and lecture series, a wide variety of advanced methods courses, training in scientific writing and oral presentation skills, courses in intercultural communication, career planning, time and project management, bioethics and research ethics, elective courses, and participation in international conferences or workshops. Regular industry excursions are offered to biotechnological or pharmaceutical companies, including visits of the R&D facilities and discussions of career options with representatives of the HR departments.

Doctoral students of the program organize the international PhD student symposium “Horizons in Molecular Biology” every year with great success, attracting outstanding speakers and up to 300 participants from all over the world. The meeting was designed by the students to promote scientific exchange between young researchers from different disciplines. Since 2007, a “Career Fair for Scientists” precedes the annual Horizons meetings. The career fair offers a unique and exciting program of career presentations, CV-Check, workshops and interviews and is also organized by the Molecular Biology students. Both events include an increasing number of alumni, sharing their experience.

At the end of the PhD training program, a doctoral thesis is submitted either in the traditional format, or as a collection of scientific publications in internationally recognized journals along with a general introduction and a discussion of the results. The degree of a “Ph.D.” or, alternatively, “Dr. rer. nat.” is awarded after the successful defense of the doctoral thesis.
Master’s Program

After the first year of intensive training, students may conclude the Master’s part of the program with a six-month thesis project, leading to a Master of Science degree. The thesis project involves experimental work under the supervision of faculty member of the Molecular Biology Program. Students also have the opportunity to conduct their Master’s thesis project at a research institution abroad.

Orientation, Language Courses, Social Activities

A two-week orientation prior to the course program provides assistance and advice for managing day-to-day life in Germany, including arrangements for bank account, health insurance, residence permit, housing, and enrollment. Students have the opportunity to meet faculty members and visit laboratories of the participating institutions. In addition, the orientation program informs students about computing and library facilities, the city and university of Göttingen, sports facilities, and cultural events.

The orientation program also includes several course units to refresh basic knowledge in chemistry and physics and introduces the students to programming in R and basic statistics.

An intensive basic language course in German is offered in cooperation with Lektorat Deutsch als Fremdsprache to facilitate the first weeks in Göttingen. Additional language courses and social activities accompany the program.

Application, Selection, and Admission 2017

Applicants must hold a Bachelor’s degree or equivalent in biology, biochemistry, chemistry, medicine, or related fields. Applicants who are not native speakers of English should demonstrate adequate competence of the English language by acceptable results in an internationally recognized test.

In the year 2017, the Molecular Biology Program received 702 applications from 68 countries.

<table>
<thead>
<tr>
<th>Continent</th>
<th>Applications</th>
<th>Admissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe (total)</td>
<td>108</td>
<td>20</td>
</tr>
<tr>
<td>Germany</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>other West Europe</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>East Europe</td>
<td>51</td>
<td>10</td>
</tr>
<tr>
<td>America (total)</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>North America</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Central/South America</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Africa (total)</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>North Africa</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>Central/South Africa</td>
<td>102</td>
<td>0</td>
</tr>
<tr>
<td>Asia (total)</td>
<td>390</td>
<td>3</td>
</tr>
<tr>
<td>Near East</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Central Asia/ Far East</td>
<td>299</td>
<td>3</td>
</tr>
<tr>
<td>Name</td>
<td>Home Country</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Julio Abril Garrido</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Sofia Ainatzi</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Ivan Avilov</td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>Tiana Sophia Behr</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Ekaterina Chukhno</td>
<td>Russian Federation</td>
<td></td>
</tr>
<tr>
<td>Polina Derevianko</td>
<td>Russian Federation</td>
<td></td>
</tr>
<tr>
<td>Anna Dyas</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Mariana Eggert Martínez</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Nils Eickhoff</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Matthew Grieshop</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Antony Grünness</td>
<td>Luxembourg</td>
<td></td>
</tr>
<tr>
<td>Yehor Horokhovskyi</td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>Mila Ilić</td>
<td>Serbia</td>
<td></td>
</tr>
<tr>
<td>Sakshi Jain</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Julia Kurlovich</td>
<td>Belarus</td>
<td></td>
</tr>
<tr>
<td>Meline Macher</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Wiebke Maurer</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Noah Mottelson</td>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Anastasija Pejkovska</td>
<td>Macedonia</td>
<td></td>
</tr>
<tr>
<td>Valentyn Petrychenko</td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>Elsa Rodrigues</td>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>Debojit Saha</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Aikaterini Vrentzou</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Ka Man Yip</td>
<td>Hong Kong</td>
<td></td>
</tr>
</tbody>
</table>
Julio Abril Garrido

EDUCATION

College / University
University of Lincoln (2014 – 2015)

Highest Degree
Bachelor of Science

Major Subjects
Biochemistry

Lab Experience
DNA, RNA/protein isolation, acrylamide/agarose gel electrophoresis, Western blotting, genotyping, PCR, RT-qPCR, UV spectrophotometry, optical microscopy.

Projects / Research

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2016 – 2017 Research Scholarship. University of Córdoba (Spain)
6/2015 – 8/2015 Summer Research Studentship. Queen’s University of Belfast (UK)
2014 – 2015 “Science’s Erasmus & Scholarship”. University of Lincoln (UK)

Sofia Ainatzi

EDUCATION

College / University
National & Kapodistrian University of Athens, Greece

Highest Degree
Bachelor of Science

Major Subjects
Biology

Lab Experience
DNA/RNA extraction, PCR, nested PCR, RT-qPCR, agarose gel electrophoresis, transformation/cloning, plasmid DNA extraction, gel extraction, human cell culture, ELISA, fluorescence microscopy and confocal microscopy

Projects / Research
10/2014 – 05/2015 “Detection of protein factors involved in the unorthodox phenomenon of Double Uniparental Inheritance of mtDNA in bivalve mollusks”, Prof. G. C. Rodakis, Department of Biochemistry and Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens.

10/2016 – 05/2017 “Investigation of the role of the NLRP3 inflammasome in severe asthma”, Dr G. Xanthou Group, Basic Research Center of Biomedical

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
Ivan Avilov

EDUCATION

College / University
Taras Shevchenko National University of Kyiv

Highest Degree
Bachelor of Science

Major Subjects
Molecular Genetics

Lab Experience
Comet assay, FISH, qPCR, DNA extraction and purification, SDS-PAGE, molecular cloning, genetic transformation

Projects / Research
2015 – 2017 “Telomere length measurement with qPCR and qFISH in patients with Diabetes mellitus”, State Institute of Gerontology NAMS of Ukraine
2012 – 2015 “Effect of antibiotic paromomycin compared with kanamycin for selection of transgenic plants”, Institute of Cell Biology and Genetic Engineering NAS of Ukraine

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2012 – 2016 Ukrainian State Scholarship for students with excellent studying achievements

Tiana Sophia Behr

EDUCATION

College / University
Ruprecht-Karls University Heidelberg

Highest Degree
Bachelor of Science

Major Subjects
Cell Biology, Molecular Biology, Biochemistry

Lab Experience
Various biochemical techniques, including site-directed mutagenesis, RT-PCR, NITTA purification, SDS-PAGE, Western blot, dot/slot-blot, reporter gene assays.

Projects / Research
1/2017 – 4/2017 “Functional characterization of novel HIV-1 Nef mutants”, supervisor: Prof. Dr. Oliver T Fackler, Department of Infectious Diseases, Integrative Virology, University Clinic Heidelberg
8/2016 – 10/2016 “Characterization of Microproteins”, supervisor: PD Dr. Daniel Straub, University of Copenhagen Plant Science Center
8/2015 – 4/2016 “Bacterial expression, processing and purification of a fusion protein”, supervisor: PD Dr. Suat Oezbek, Center for Organismal Studies COS Heidelberg
1/2014 – 12/2014 “Cloning of therapeutic oncolytic Adenoviruses”, supervisor: Prof. Dr. Akseli Hemminki, Haartman-Institute of Helsinki University

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2016 German Academic Exchange Service (DAAD) RISE Stipend
Ekaterina Chukhno

EDUCATION
College / University
Saint Petersburg State University
Highest Degree
Bachelor of Science
Major Subjects
Biology (Minor: Biochemistry)

Lab Experience
MTT assay, LDH cytotoxicity assay, colonogenic assay, Luciferase reporting test, PAAG gel electrophoresis, Western blotting, Chaperone refolding test, ELISA, Chaperone ELISA, dialysis, electrophoresis in agarose gel, plasmid purification, transient transfection

Projects / Research
1/2016 – 5/2017 “Search for small molecules with capacity for inhibiting of chaperone Hsp70 synthesis in tumor cells”, Institute of Cytology of the Russian Academy of Science, Laboratory of Cell Protection Mechanisms

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School

Polina Derevianko

EDUCATION
College / University
Lomonosov Moscow State University
Highest Degree
Bachelor of Science
Major Subjects
Molecular Biology

Lab Experience
Various biochemical, molecular and cell biology methods, such as qPCR, Western blotting, molecular cloning in E. coli, spectrophotometry; basic experience in ChIP, RNA FISH, DNA FISH, RNAi. Maintenance of E. coli, Drosophila and Drosophila S2 cell cultures, organ dissections from flies

Projects / Research
07/2015 – 08/2017 “Molecular mechanisms of coactivator complexes functioning in transcription of the ecdysone-dependent and heat shock genes of D. melanogaster”, Institute of Gene Biology, Moscow, Russia
06/2016 – 05/2017 “Induction of de novo transcription of dhr3 gene at different developmental stages of Drosophila melanogaster”, Institute of Gene Biology, Moscow, Russia. Bachelor’s thesis

Scholarships / Awards
09/2017 – 09/2018 Stipend by the International Max Planck Research School
09/2016 – 02/2017 Increased scholarship for achievements in research and study, Moscow State University, Moscow, Russia
02/2015, 02/2014 “Rekursiya” fund scholarships for excellent study
Anna Dyas

EDUCATION

College / University
University of Cambridge

Highest Degree
Bachelor of Arts

Major Subjects
Biology

Lab Experience
Molecular cloning; microbiological techniques; cell culture; transfection protocols; harvesting and preparation of RNA, DNA and cDNA; endpoint and realtime PCR amplification; gel electrophoresis; confocal microscopy; ImageJ analysis; matlab; R

Projects / Research
 07/2016 – 08/2016 “Upregulation of relaxin expression to combat the muscle fibrosis associated with the muscular dystrophies”. Centre for Biomedical Sciences, Royal Holloway University of London
 10/2016 – 04/2017 “Investigating the role of MOZART1 on microtubule organisation”. Conduit Laboratory, Department of Zoology, University of Cambridge

Scholarships / Awards
 2017 – 2018 Stipend by the International Max Planck Research School
 07/2016 – 08/2016 Wellcome Trust Vacation Scholarship

Mariana Eggert Martínez

EDUCATION

College / University
Freie Universität Berlin

Highest Degree
Bachelor of Science

Major Subjects
Biology

Lab Experience
Basic molecular biology techniques (PCR, Gel electrophoresis, immunohistochemistry), mutagenesis, confocal microscopy, STED microscopy, image analysis and quantification, gene expression tools and stock maintenance in Drosophila

Projects / Research
 05/2017 – 08/2017 Bachelor thesis project with Stephan Sigrist at Freie Universität Berlin: “Spatiotemporal and isoform specific knockdown of the active zone protein Unc13 in Drosophila melanogaster”
 08/2016 – 10/2016 Summer research internship with Guy Tanentzapf at University of British Columbia: “Talin-Rap1-interaction is required for integrin function in Drosophila melanogaster”

Scholarships / Awards
 2017 – 2018 Stipend by the International Max Planck Research School
 08/2016 – 10/2016 DAAD RISE worldwide scholarship
 09/2015 – 02/2016 ERASMUS scholarship
Nils Eickhoff

EDUCATION

College / University
Georg August University of Göttingen
Freie Universität Berlin

Highest Degree
Bachelor of Science

Major Subjects
Molecular Medicine, Biology

Lab Experience
General molecular biology techniques such as PCR/RT-qPCR, DNA assembly, SDS-PAGE, AGE, Western blot, transformation, cloning, RNAi, mammalian cell culture and viability assays. Histology staining methods on tissue sections (IF, HE, PAS), CAM assay, substance transport assay and quantification via LC-MS/MS

Projects / Research

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2017 Erasmus+ Stipend

Matthew Grieshop

EDUCATION

College / University
University of Wisconsin-Madison

Highest Degree
Bachelor of Science, with Honors

Major Subjects
Biochemistry, Computer Science (minor), Mathematics (minor)

Lab Experience
Solid-phase synthesis, chromatography (TLC/HPLC/Size-Exclusion), mass spectrometry (MALDI-TOF/ESI), mammalian cell culture, RNA expression quantification, protein binding assays

Projects / Research
02/2013 – 01/2016 Development of COSMIC (Crosslinking of Small Molecules to Isolate Chromatin) as a method to map genome occupancy of small molecules. (doi: 10.3791/53510)

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2015 Hilldale Undergraduate Research Fellowship
2015 UW Biochemistry Undergraduate Summer Research Scholarship
2013 – 2016 University of Wisconsin (UW) Dean’s List
2013 – 2016 Wisconsin Academic Excellence Scholarship
Antony Grüness

EDUCATION
College / University
Clark University Worcester, USA
Highest Degree
Bachelor of Science
Major Subjects
Biochemistry and Molecular Biology
Lab Experience
Computational structural biology (Schrodinger, MOE, Chimera), protein purification, fluorescence spectroscopy, basic techniques in biochemistry and bioinformatics
Projects / Research
01/2017 – 04/2017 “Structure-based development of inhibitors against CtBP, a cancer target”, Prof. Royer, UMass Medical School, Worcester, MA
01/2015 – 04/2016 “Synthesis of fluorescently labeled non-viral DNA delivery agents”, Prof. Granados-Focil, Clark University, Worcester, MA
06/2015 – 09/2015 “Integrated Systems for Adverse Event Reporting: Creating a Fair and Just Safety Culture”, Boston Children’s Hospital, Boston, MA
Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2016 – 08/2018 LEEP Summer Scholarship
2013 Henry J. Leir Award

Yehor Horokhovskyi

EDUCATION
College / University
Taras Shevchenko National University of Kyiv, Ukraine
Highest Degree
Bachelor of Science
Major Subjects
Biology
Lab Experience
Basic biochemical, molecular and cell biology techniques. Also some experience in working with vivarium animals
Projects / Research
01/2013 – 08/2013 “Effects of polycation peptides on hippocampal cell electrophysiology” (Bogomoletz Institute of Physiology, Kyiv)
02/2015 – 03/2015 “A force probe to detect single-molecule force on p130Cas protein” (Leiden Institute of Physics)
12/2015 – 05/2017 “A search for chromosome inversions in D. melanogaster Chernobyl population” (Taras Shevchenko National University of Kyiv, Genetics department)
08/2016 – 06/2017 “Neurotoxic Potential of Lunar and Martian Dust Simulants”, “Neurotoxic Potential of Cerium(IV) Oxide Nanoparticles” (Palladin Institute of Biochemistry)
Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2013 – 2017 Ukrainian governmental scholarship for good academic performance
Mila Ilić

EDUCATION

College / University
University of Belgrade, Serbia

Highest Degree
Bachelor of Science

Major Subjects
Molecular Biology

Lab Experience
Western blot, PCR/RT-qPCR, DNA/RNA-isolation, transformation/ cloning, Gateway cloning, transfection (plasmid-DNA/siRNA), agarose gel and SDS-PAGE electrophoresis, protein purification, cell culture, creating single and double gene knock-downs using inducible shRNA system, restriction analysis

Projects / Research
06/2016 – 08/2016 Amgen Scholars Program, Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Altun group. Project: “Deubiquitinating enzymes in B-Raf inhibitor resistant melanoma cell lines”

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2016 – Amgen Scholars Program Scholarship, Amgen Foundation
2015 – 2016 Scholarship for exceptionally talented scholars and students, Ministry of Education, Science and Technological Development of the Republic of Serbia

Sakshi Jain

EDUCATION

College / University
University of Delhi, Daulat Ram College

Highest Degree
Bachelor of Science

Major Subjects
Biochemistry, Molecular Biology, Cell Biology, Immunology, Metabolism, Genetics, Biophysics, Endocrinology, RDT

Lab Experience
Techniques in biochemistry, molecular biology, cell biology and immunology such as PAGE, agarose electrophoresis, ELISA, spectrophotometry, chemiluminescence, Western blotting, hemocytometry, agglutination assays, enzymatic assays, PCR, transformation, chromatography, toxological studies using zebrafish larvae, breeding zebrafish, growing artemia and paramecium for fish feed, genetic studies using Drosophila and various mutant forms

Projects / Research
08/2015 – 08/2016 “Zebrafish as a model organism to access the level of bio-toxicants in river Yamuna”
2016 – 2017 worked in Drosophila Center, Star Department under GOI

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2016 Awarded best research project in 92nd convocation of Delhi University
2015 – 2016 Stipend from University of Delhi for research innovation project
Julia Kurlovich

EDUCATION
College / University
University of Wroclaw, Poland

Highest Degree
Bachelor of Science

Major Subjects
Biotechnology

Lab Experience
Eukaryotic and bacterial cell culturing, enzyme assays, data acquisition using confocal microscopy and image analysis, IR spectroscopy, mass spectrometry, NMR
Molecular biology: PCR/Reverse transcription PCR, SDS /Native PAGE, Western blot, cloning, ELISA, flow cytometry
Histology: histology sample manipulation (deparaffinization, dehydration), immunofluorescent staining, hematoxylin and eosin stain, Schiff’s stain
Genetics: Drosophila culturing and mating, complementation test, gene mapping, Ames test

Projects / Research
2017 – 2018 Role of microRNA in glycolysis in cancer cells, University of Wroclaw, Poland

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2014 – 2017 European Scholarship Scheme for Young Belarusians (ESSYB)

Meline Macher

EDUCATION
College / University
University of Göttingen

Highest Degree
Bachelor of Science

Major Subjects
Molecular Medicine

Lab Experience
Immunohistochemistry, epifluorescence microscopy, Western blotting, ECL, qRT & in situ PCR, agarose gel electrophoresis & SDS PAGE, cryostating, cell culture (adherent and non-adherent cells), immunocytochemistry, ribosomal profiling, cloning of a mammalian gene into E.coli (DNA & plasmid extraction, PCR, digestion, ligation, transformation), spectrophotometry, basics of protein purification

Projects / Research
04/2017 – 08/2017 Effects of the S1PR1/5 modulator BAF312 on the demyelinating model of the twitcher mouse
03/2016 Endogenous DPP9: quantification in hDG-75 cells and localisation in HeLa cells

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
04/2017 – 08/2017 Erasmus+ stipend for Bachelor’s thesis at Trinity College Dublin
Wiebke Maurer

EDUCATION
College / University
University of Göttingen

Highest Degree
Bachelor of Science

Major Subjects
Biology

Lab Experience
Mouse models, cell culture (generation and culture of primary human keratinocytes with mitotic inactivated embryonic mouse fibroblasts), histological staining (HE, IF, IHC, FISH, standard staining methods), flow cytometry and cell sorting, DNA/RNA isolation, cDNA synthesis, agarose gel electrophoresis, SDS-PAGE, PCR/qPCR, Sanger sequencing, SELEX, transformation/cloning, isolation and IF staining of individual hair follicles

Projects / Research
03/2017 – 07/2017 “Histological and cellular characterization of CD4-positive cells of murine and human skin”, Bachelor’s thesis, Human Genetics, University Medical Center Göttingen
08/2013 – 12/2013 “Generating ssDNA-aptamers to bind the active site of fucosyltransferase 9 using the SELEX method”, Internship at the Institute for Biochemistry and Molecular Biology, University of Hamburg

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School

Noah Mottelson

EDUCATION
College / University
University of Copenhagen

Highest Degree
Bachelor of Science

Major Subjects
Molecular Biomedicine, Molecular and Cell Biology

Lab Experience
General biochemical and molecular biology techniques such as DNA/RNA extraction, sequencing, yeast-two hybrid screening, Western and Northern blotting, PCR, affinity chromatography, enzyme kinetics assays, scanning electron microscopy, DNA barcoding, comet assay, basic R and python programming

Projects / Research
08/2016 – 01/2017 “Anhydrobiosis in the tardigrade Ramazzottius oberhaeuseri”. Bachelor thesis at University of Copenhagen

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2015 Novo Nordisk International Talent Program
Anastasija Pejkovska

EDUCATION

College / University
Jacobs University, Bremen, Germany

Highest Degree
Bachelor of Science

Major Subjects
Biochemistry and Cell Biology

Lab Experience
Mammalian cell culture and transfection, indirect immunofluorescence, SDS-PGAE, Western blot, activity assays, activity-based probes, use of transgenic mice for tissue analysis, recombinant protein isolation and characterization, DNA and RNA isolation, RT-PCR, agarose gel electrophoresis, other basic biochemical and cell biological techniques.

Projects / Research
9/2015 – 5/2016 “Visualization and characterization of kallikreins in the human thyroid epithelial cell line Nthy ori 3-1”, Cell Biology Laboratory, Prof. Dr. Klaudia Brix, Jacobs University, Bremen, Germany.
07/2015 – 08/2015 “Expression, purification, activation and characterization of human kallikrein 8 through the inducible expression in *L. tarrentolae*, Structural Biology Laboratory, Prof. Dr. Grzegorz Dubin, Malopolska Center of Biotechnology, Krakow, Poland

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2013 – 2016 Merit Scholarship by Jacobs University

Valentyn Petrychenko

EDUCATION

College / University
Taras Shevchenko National University of Kyiv, Ukraine

Highest Degree
Bachelor of Science

Major Subjects
Biochemistry and Molecular Biology

Lab Experience
Template modelling of proteins and nucleic acids in Modeller, ModeRNA and MMB. Molecular dynamics simulations in water solvent using GROMACS.

Projects / Research
10/2014 – 08/2017 Computational modelling and molecular dynamics of *Bos taurus* TyrRS with cognate tRNA

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2013 – 2017 Ukrainian State Scholarship for students with excellent studying achievements (5/8 semesters)
Elsa Rodrigues

EDUCATION

College / University
University of Lisbon, Portugal

Highest Degree
Bachelor of Science

Major Subjects
Chemistry and Biochemistry

Lab Experience
Basic molecular biology and biochemistry techniques, protein purification, fluorescence microscopy, UV spectrophotometry, enzyme kinetic assays.

Projects / Research
07/2016 – 03/2017 “Expression and purification of Kinesins and RBPs for complex biophysical characterization and in vitro reconstitution of denticrine RNA transport, “Cytoskeleton dependent RNA distribution mechanisms” lab, CRG, Barcelona, Spain
08/2015 Kinetic and stoichiometry characterization of C. glutamicum enzyme 2,3-butanediol dehydrogenase by 1H NMR and spectrophotometric assays, “Cell Physiology and NMR” lab, ITQB, Oeiras, Portugal

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2016 – 2017 Stipend by CRG for 4th Summer Internship Program
2015 – Erasmus scholarship

Debojit Saha

EDUCATION

College / University
University of Hyderabad

Highest Degree
Master of Science

Major Subjects
Biochemistry

Lab Experience
Various biochemical and molecular biology techniques; basic bioinformatics tools.

Projects / Research
08/2016 – 02/2017 “TRPC6 channel as an emerging determinant of podocyte injury in kidney diseases under hypoxic condition”, University of Hyderabad
05/2016 – 07/2016 “Understanding the role of Rcl1 and Nob1 endoribonucleases in pre-ribosomal RNA processing of Entamoeba histolytica”, JNU, New Delhi
03/2014 – 01/2015 “Pathogenicity reduction of Rhizoctonia by phyllosphere modification of Adhatoda vasica leaves”, St. Xaviers’s University, Kolkata

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
2017 Rank holder in MSc Biochemistry, University of Hyderabad
2017 JRF-NET scholarship funded by CSIR
2016 Indian Academy of Sciences Summer Research Fellow
2012 – 2016 DST-INSPIRE Scholarship for higher education, Government of India to top 1% students in India
Aikaterini Vrentzou

EDUCATION

College / University
University of Crete

Highest Degree
Bachelor of Science

Major Subjects
Molecular Biology and Biotechnology

Lab Experience
Mammalian cell culture (cancer and mesenchymal stromal cells), 2D and 3D in vitro assays (spheroid formation and migration assays, co-culture), bacterial culture, molecular cloning, gene expression analysis (real-time PCR, Western blot), epigenetic analysis, immunocytochemistry

Projects / Research
09/2016 – 12/2016 “Tumor and microenvironment interactions: The effect of adipose tissue derived mesenchymal stromal cells on the migration of cancer cells out of 3D spheroids”. Dir. L. Kucerova, Cancer Research Institute of SAS, Biomedical Research Center, Slovakia
06/2015 – 06/2016 “The role of cell fate determinant protein NUMB in tumor initiation and progression”. Prof. J. Papamatheakis, Institute of Molecular Biology-Biotechnology, Foundation for Research and Technology-Hellas, Greece

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
09 – 12/2016 Erasmus + Mobility for Traineeship Scholarship

Ka Man Yip

EDUCATION

College / University
Hong Kong University of Science and Technology

Highest Degree
Bachelor of Science

Major Subjects
Chemistry

Lab Experience
Basic molecular biology techniques, immunoassays, micro- and nanoparticles synthesis, electrochemical analysis, spectroscopy

Projects / Research
07/2016 – 12/2016 Fabrication of Biopolymer/Enzyme Microparticles for Electrochemical Analysis by Cyclic Voltammetry
01/2016 – 06/2016 Production of Fluorescent Recombinant Proteins by DNA Assembly as Bioprobes for Medical Applications
06/2015 – 08/2015 Use of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene and Fluorescein Diacetate on Model Paper Microzone Plates for Paper-based Immunoassay
01/2015 – 05/2015 Use of Silica Nanoparticles as Signal Generator of Paper-Based Immunoassay via Surface Modification

Scholarships / Awards
2017 – 2018 Stipend by the International Max Planck Research School
<table>
<thead>
<tr>
<th>Name</th>
<th>Group / Institution</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathias Bähr</td>
<td>Neurology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Holger Bastians</td>
<td>Cellular Oncology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Rüdiger Behr</td>
<td>Degenerative Diseases</td>
<td>DPZ</td>
</tr>
<tr>
<td>Tim Beißbarth</td>
<td>Statistical Bioinformatics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Markus Bohnsack</td>
<td>Molecular Biology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Gerhard H. Braus</td>
<td>Molecular Microbiology and Genetics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Bertram Brenig</td>
<td>Molecular Biology of Livestock</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Nils Brose</td>
<td>Molecular Neurobiology</td>
<td>MPI em</td>
</tr>
<tr>
<td>Fabian Commichau</td>
<td>General Microbiology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Patrick Cramer</td>
<td>Molecular Biology</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Rolf Daniel</td>
<td>Genomic and Applied Microbiology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Matthias Dobbelstein</td>
<td>Molecular Oncology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Roland Dosch</td>
<td>Molecular Control of Zebrafish Oogenesis</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Jörg Enderlein</td>
<td>Biophysics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Ivo Feußner</td>
<td>Plant Biochemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Ralf Ficner</td>
<td>Molecular Structural Biology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>André Fischer</td>
<td>Psychiatry and Psychotherapy</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Wolfgang Fischle</td>
<td>Chromatin Biochemistry</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Christiane Gatz</td>
<td>Plant Molecular Biology and Physiology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Dirk Görlich</td>
<td>Cellular Logistics</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Christian Griesinger</td>
<td>NMR-based Structural Biology</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Uwe Groß</td>
<td>Medical Microbiology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Jörg Großhans</td>
<td>Developmental Biochemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Helmut Grubmüller</td>
<td>Theoretical and Computational Biophysics</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Heidi Hahn</td>
<td>Human Genetics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Kai Heimel</td>
<td>Microbial Cell Biology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Stefan Hell</td>
<td>NanoBiophotonics</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Claudia Höbartner</td>
<td>Nucleic Acid Chemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Reinhard Jahn</td>
<td>Neurobiology</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Stefan Jakobs</td>
<td>Mitochondrial Structure and Dynamics</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Andreas Janshoff</td>
<td>Biophysical Chemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Name</td>
<td>Group / Institution</td>
<td>Institution</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Steven Johnsen</td>
<td>Translational Cancer Research</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Dieter Klopfenstein</td>
<td>Biophysics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Wilfried Kramer</td>
<td>Molecular Genetics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Heike Krebber</td>
<td>Molecular Genetics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Volker Lipka</td>
<td>Plant Cell Biology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Reinhard Lührmann</td>
<td>Cellular Biochemistry</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Burkhard Morgenstern</td>
<td>Bioinformatics</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Tobias Moser</td>
<td>Auditory Neuroscience</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Klaus-Armin Nave</td>
<td>Neurogenetics</td>
<td>MPI em</td>
</tr>
<tr>
<td>Vladimir Pena</td>
<td>X-Ray Crystallography</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Tomas Pieler</td>
<td>Developmental Biochemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Stefanie Pöggeler</td>
<td>Genetics of Eukaryotic Organisms</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Stefan Pöhlmann</td>
<td>Infection Biology</td>
<td>DPZ</td>
</tr>
<tr>
<td>Peter Rehling</td>
<td>Biochemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Silvio Rizzoli</td>
<td>Neuro- and Sensory Physiology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Marina Rodnina</td>
<td>Physical Biochemistry</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Melina Schuh</td>
<td>Meiosis</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Blanche Schwappach</td>
<td>Molecular Biology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Halyna Shcherbata</td>
<td>Gene Expression and Signaling</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Johannes Söding</td>
<td>Computational Biology</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Holger Stark</td>
<td>Structural Dynamics</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Alexander Stein</td>
<td>Membrane Protein Biochemistry</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Claudia Steinem</td>
<td>Biomolecular Chemistry</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Jörg Stülke</td>
<td>General Microbiology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Michael Thumm</td>
<td>Molecular Cell Biology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Kai Tittmann</td>
<td>Molecular Enzymology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Henning Urlaub</td>
<td>Bioanalytical Mass Spectrometry</td>
<td>MPI bpc</td>
</tr>
<tr>
<td>Lutz Walter</td>
<td>Primate Genetics</td>
<td>DPZ</td>
</tr>
<tr>
<td>Jürgen Wienands</td>
<td>Cellular and Molecular Immunology</td>
<td>U Göttingen</td>
</tr>
<tr>
<td>Ernst Wimmer</td>
<td>Developmental Biology</td>
<td>U Göttingen</td>
</tr>
</tbody>
</table>

U Göttingen = Georg August University, MPI bpc = Max Planck Institute for Biophysical Chemistry, MPI em = Max Planck Institute for Experimental Medicine, DPZ = German Primate Center
Mathias Bähr

Professor of Neurology

- 1985 MD, University of Tübingen Medical School, Training in Neurology at University Hospitals in Tübingen and Düsseldorf
- DFG and Max Planck Fellow at the Max Planck Institute for Developmental Biology Tübingen and at the Department of Anatomy and Cell Biology, Washington University St.Louis
- Schilling-Foundation Professor for Clinical and Experimental Neurology, University of Tübingen
- Director at the Department of Neurology, University of Göttingen since 2001

Major Research Interests

Neuronal cell loss is not only a major feature of human neurodegenerative diseases like Parkinson’s disease (PD), Alzheimer’s disease (AD) or stroke, but can also be observed in neuroinflammatory conditions like Multiple Sclerosis (MS) or after traumatic lesions, e.g. of the optic nerve. We examine the cellular and molecular mechanisms of neuronal dysfunction and neuronal cell death in animal models of the respective disorders with the ultimate goal to detect new targets for a therapeutic neuroprotective intervention.

We have used for many years the retina-tectal system in rodents as our standard model to study de- and regeneration in vitro and in vivo. Our group has in detail analysed the cellular and molecular cascades that follow lesions of the optic nerve and ultimately lead to cell death of the retinal ganglion cells. To monitor the changes that occur directly after lesions we succeeded in implementing in vivo life-imaging of the rat and mouse optic nerve, which offers us a unique opportunity to study the complex processes that follow traumatic or inflammatory lesions of CNS fibre tracts.

In classical neurodegeneration research we have chosen PD as our topic. In this field, a multidisciplinary research team with our participation in the area C2 of the excellence cluster CNMPB examines the role of a-synuclein aggregation for dopaminergic dysfunction and cell death and characterizes other disease related proteins in order to develop new neuroprotective strategies.

In all our model systems we use AAV-mediated viral gene transfer to express different disease-de- or de-/regeneration associated genes as research tools and also as potential therapeutic factors to manipulate the respective molecular events in vitro and in vivo. To that end, we have e.g. developed regulatory elements that allow a controlled gene expression in complex in vivo models.

The final aim of our research approaches is to describe in detail the molecular pathophysiology that leads to axonal and neuronal loss and to develop new therapeutic strategies, some of which have already been translated into proof of concept studies in human patients.

Selected Recent Publications

Holger Bastians

Professor of Cellular Oncology

- Professor of Cellular Oncology, University Medical Center, Göttingen (UMG), since 2013
- Heisenberg-Professor of Cellular Oncology, University Medical Center Göttingen (UMG), 2011 – 2013
- Heisenberg fellow, Philipps-University Marburg, 2008 – 2011
- Group leader, Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, 2000 – 2010
- Postdoctoral fellow with Prof. Joan Ruderman, Harvard Medical School, Boston, USA, 1996 – 1999
- Dr. rer. nat., German Cancer Research Center (DKFZ), Heidelberg, 1996

Major Research Interests

Mitosis represents the key event during the eukaryotic cell cycle during which the DNA is equally distributed onto the two daughter cells. Defects in mitotic signaling pathways are often detected in human cancer and are directly associated with the missegregation of sister chromatids resulting in chromosomal instability (CIN) and aneuploidy. In fact, this is directly linked to tumorigenesis and represents a major characteristic of human cancer. However, the molecular mechanisms underlying CIN and the genetic lesions causing aneuploidy in human cancer are largely unknown.

In addition to its fundamental role for the maintenance of chromosomal stability, mitosis represents an important target for anti-cancer therapy and many anti-mitotic drugs including taxanes and Vinca alkaloids are frequently used in the clinic to treat various malignancies. However, it is still unclear how the interference with the mitotic progression is linked to tumor cell death, the desired outcome of therapy. A knowledge of this cross-talk is required for the development of future therapy concepts.

Based on these key points of cancer research our lab is focusing on the following main questions:
1. What are the molecular mechanisms of chromosome segregation during mitosis and what are genetic lesions in human cancer responsible for chromosomal instability?
2. What are the molecular mechanisms of mitosis associated cell death after chemotherapy treatment and what are the routes of chemotherapy resistance in human cancer?
3. Based on our investigations of mitotic signaling pathways we are aiming to identify novel mitotic drug targets in order to improve current therapies and to develop novel therapeutic concepts.

Selected Recent Publications

Rüdiger Behr

Head of Platform Degenerative Diseases, German Primate Center

- 1995 Diploma in Biology, Westfälische Wilhelms-Universität (WWU) Münster, Germany
- 1998 PhD in Biology, Institute of Reproductive Medicine, WWU Münster, Germany
- 1999 – 2005 Post Docs at the Institute of Reproductive Medicine of the WWU Münster; the University of Pennsylvania Medical School, Department of Genetics, Philadelphia, PA, USA; and the Institute of Anatomy, Developmental Biology, University of Essen, Germany
- 2005 – 2008 Head of the Stem Cell Biology Junior Research Group, German Primate Center, Göttingen, Germany
- 2008 – 2015 Head of Stem Cell Biology Unit, German Primate Center, Göttingen, Germany
- Since 2016 Head of Platform Degenerative Diseases, German Primate Center, Göttingen, Germany

Major Research Interests

We are interested in the generation, characterization and genetic modification of primate pluripotent stem cells. We generated embryonic stem cells and induced pluripotent stem cells from the common marmoset monkey and compare these pluripotent stem cell types with natural monkey preimplantation embryos and pre-meiotic germ cells. In addition to this developmental aspect we use pluripotent stem cells in combination with gene editing technology to establish genetic disease models and to test, in collaboration with our partners, cell replacement therapies in pre-clinically relevant settings. Here we currently focus as a member of the Deutsches Zentrum für Herz kreislaufforschung (DZHK) on cardiovascular aspects.

Selected Recent Publications

Tim Beißbarth

Associate Professor of Biostatistics

- Dr. rer. nat, University Heidelberg, 2001
- Postdoctoral fellow, Department Computational Molecular Biology, Max-Planck-Institute for molecular Genetics, Berlin, 2001 – 2002
- Postdoctoral fellow, Department Bioinformatics, WEHI, Melbourne, Australia, 2002 – 2005
- Group Leader, Bioinformatics & Modeling, Department Molecular Genome Analysis, DKFZ, Heidelberg, 2005 – 2008
- Professor, Statistical Bioinformatics, Department Medical Statistics, University Medical Center, Göttingen, since 2008

Major Research Interests

The Statistical Bioinformatics group of the department of Medical Statistics is developing statistical applications at methods for biomedical research. We are closely working together with other biostatisticians/bioinformaticists as well as clinical and biological researchers. The focus of the group is the development of methods and tools to analyse biomedical data and to reconstruct biological networks. These methods are implemented mostly in the statistical computing environment of R.

Selected Recent Publications

Markus Bohnsack

Professor of Molecular Biology

- Dr. rer. nat. (PhD) at the Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg (2005)
- Postdoctoral fellow at the University of Edinburgh, UK (2006 – 2008)
- Group leader at the Goethe University, Frankfurt (2008 – 2012)
- Adjunct Investigator at the Cluster of Excellence Frankfurt (2009 – 2012)
- Professor of Molecular Biology, University Medical Centre (UMG), Göttingen (since 2012)

Major Research Interests

RNAs and ribonucleoprotein complexes (RNPs) are involved in many key cellular processes, including translation and at various levels in the regulation of gene expression. Our group is interested in studying the biogenesis, dynamics, nuclear export and functions of several different classes of RNPs in both yeast and mammalian cells. We employ genome-wide techniques such as UV crosslinking and analysis of cDNA (CRAC) as well as proteomics to discover new protein-protein and protein-RNA interactions in vivo. Functional analysis is then performed using methods from cell and molecular biology as well as biochemistry, allowing us to gain insights into the many roles of RNP complexes. Several projects aim to understand the biogenesis of ribosomes, a highly energy consuming process that is regulated by proto-oncogenes and tumour suppressors. In particular, we focus on elucidating the roles of key enzymatic factors such as RNA helicases and exo- and endonucleases that catalyse irreversible maturation steps and thereby drive the directionality of the pathway. Determination of the functions of such enzymes also provides the basis for understanding how this process is modulated in response to environmental and developmental cues. Furthermore, multiple genetic diseases, termed ribosomopathies, are caused by mutations in ribosome biogenesis cofactors or ribosomal proteins and the detailed characterisation of these factors enables us to reveal the molecular basis of such disorders. Interestingly, we have recently found that several RNA helicases involved in ribosome biogenesis also function in different cellular processes, indicating that they may play important roles in the cross-regulation of these pathways in RNA metabolism. Another major aspect of our work is the identification of the substrates of RNA methyltransferases. This allows us to determine the roles of the modifications they introduce in regulating the biogenesis and functions of RNAs and RNPs in vivo.

Selected Recent Publications

Gerhard H. Braus

Professor of Microbiology and Genetics

- Diploma (Biology), Albert-Ludwig University, Freiburg i. Br. (Germany), 1983
- Dr.sc.nat., Swiss Federal Institute of Technology (ETH), Zürich (Switzerland), 1987
- Habilitation (Microbiology), Swiss Federal Institute of Technology (ETH), Zürich (Switzerland), 1991
- Associate Professor of Biochemistry, Friedrich Alexander University, Erlangen (Germany), 1993 – 1996
- Since 1996 Professor of Microbiology (since 2001 Professor of Microbiology and Genetics) in Göttingen

Major Research Interests

The major focus of the laboratory is on the control of developmental programs, protein turnover, pathogenicity and the interplay between development and primary and secondary metabolism. Our models are eukaryotic microorganisms (yeasts and filamentous fungi):

(i) We are interested how light coordinates fungal development with fungal secondary metabolism and toxin production.

(ii) Nedd8 is a ubiquitin-like protein which is involved in the control of protein turnover. We study the Nedd8-system including the COP9 signalosome using fungi as model systems.

(iii) We are interested in the molecular control (protein turnover and translation) of adhesion as initial step in infection and biofilm formation.

(iv) We study fungi as models for Parkinson (yeast), fungi as pathogens of immunocompromised patients (A. fumigatus) and as plant pathogens (V. longisporum).

Selected Recent Publications

Bertram Brenig

Full Professor of Molecular Biology of Livestock
• Director of the Institute of Veterinary Medicine
• Dr. med. vet., University of Munich, Munich 1987

Major Research Interests
We are interested in the structural and functional analysis of mammalian genes and genomes and are investigating the cause of different important genetic traits and defects in domestic animals. Currently we are working on the following projects:
• Molecular genetics of developmental defects of the eye (cataract, iris hypopigmentation) (cattle)
• Leg and feet disease (digital dermatitis, interdigital hyperplasia) (cattle)
• Early embryonal death (lethal haplotypes) (cattle)
• Male infertility (cattle)
• Developmental skeletal defects (Osteogenesis imperfecta, osteodystrophy) (cattle)
• Intervertebral disk disease (dog)
• Hemophilia A and B (dog)

We are using genome wide association studies (high-throughput screening and genotyping, GWAS) and next generation sequencing (NGS) techniques for the identification of chromosomal regions that are linked to the traits or disorders. Fine mapping, positional cloning and candidate gene analysis are used for further elucidation.

Selected Recent Publications
Nils Brose

Professor, Director at the Max Planck Institute for Experimental Medicine

- Undergraduate studies in Biochemistry, Eberhard Karls University, Tübingen, Germany (1981 – 1985)
- MSc in Physiology with Marianne Fillenz, University of Oxford, Oxford, UK (1987)
- PhD in Biology with Reinhard Jahn, Ludwig Maximilians University, Munich, Germany (1990)
- Postdoctoral training with Stephen F. Heinemann (Salk Institute, La Jolla, CA, USA) and Thomas C. Südhof (University of Texas Southwestern Medical Center, Dallas, TX, USA) (1991 – 1995)
- Research Group Leader, Max Planck Institute of Experimental Medicine, Göttingen, Germany (1995 – 2001)
- Director, Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany (since 2001)

Major Research Interests

Our research focuses on the molecular mechanisms of nerve cell development and synapse formation and function in the vertebrate central nervous system. To this end, we combine biochemical, morphological, mouse genetic, physiological, and behavioral methods to elucidate the molecular basis of nerve cell differentiation, synapse formation, transmitter release, and postsynaptic transmitter sensing. In selected cases, we explore the dysfunction of corresponding biological processes in neuropsychiatric diseases. Our work in the field of nerve cell development focuses on the role of SUMOylation in cell polarity formation, cell migration, and neuritogenesis, our synaptogenesis research concentrates on synaptic cell adhesion proteins and their role in synapse formation and function, and our studies on the molecular mechanisms of neurotransmitter release focus on components of the presynaptic active zone and their regulatory function in synaptic vesicle fusion.

Selected Recent Publications

Fabian Commichau

Group leader: Institute of Microbiology and Genetics, Department of General Microbiology

- Since 2011 Group leader at the Department of General Microbiology, University of Göttingen, Germany
- 2009 – 2011 Scientist, DSM Nutritional Products Ltd, Grenzach-Wyhlen & Kaiseraugst, Germany & Switzerland
- 2008 – 2009 Postdoctoral Fellow at the Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
- 2006 – 2008 Postdoctoral Fellow at the Department of General Microbiology, University of Göttingen, Germany
- 2006 PhD in Microbiology (Dr. rer. nat.), Department of General Microbiology, University of Göttingen, Germany
- 2003 Diploma in Biology, Institute for Biology IV (Microbiology), Rheinisch-Westfälische Technische Hochschule Aachen, Germany

Major Research Interests

Glutamate is the most abundant metabolite that delivers the majority of nitrogen for synthesis of vital building blocks in any living cell. The Gram-positive bacterium Bacillus subtilis synthesizes glutamate by the combined action of the glutamine synthetase and the glutamate synthase while the glutamate dehydrogenase strictly degrades glutamate. As the glutamate synthesizing and degrading reactions form a crucial link between carbon and nitrogen metabolism, this metabolic intersection is tightly controlled. We have observed that the bacteria respond to perturbation of glutamate homoeostasis by the rapid accumulation of suppressor mutations. The specific and fast activation and inactivation of genes involved in glutamate metabolism strongly resembles the Lamarckian mode of evolution. We want to address the question how the bacteria sense the need to change their genetic make-up to maintain glutamate homoeostasis.

We are also interested in the control of the transcription factor PrfA in Listeria monocytogenes, a Gram-positive bacterium that lives usually in the soil. However, ingested by contaminated food, the bacterium may cause gastroenteritis and abortions in pregnant women with a high mortality rate. Upon ingestion of the bacteria by humans the transcription factor PrfA directly activates the expression of about 10 genes encoding the major virulence factors. There is strong indication that signals derived from carbon metabolism are involved in the process. Thus, the carbon source provides a cue for the control of PrfA activity. However, the underlying molecular mechanism is yet unclear. We want to find an answer to the long-standing open question how PrfA activity is regulated by the available carbon source.

Selected Recent Publications

Patrick Cramer

Professor, Director at the Max Planck Institute for Biophysical Chemistry

• Study of chemistry at the Universities of Stuttgart and Heidelberg, Research student at the University of Bristol (UK) and Cambridge (UK)
• 1995 Diploma in chemistry at the University of Heidelberg
• 1998 Doctorate at the University of Heidelberg/EMBL Grenoble (France)
• 1995 –1998 Predoctoral fellow in Grenoble (France)
• 1999 – 2000 postdoctoral fellow at Stanford University (USA)
• 2001 – 2003 Tenure-track professor of biochemistry at the University of Munich
• 2004 – 2014 Professor of biochemistry at the University of Munich
• 2004 – 2013 Director at the Gene Center of the University of Munich (LMU)
• Since 2014 Director of the Department for Molecular Biology at the Max Planck Institute of Biophysical Chemistry

Major Research Interests

Molecular Biology: from molecular movies to regulatory systems

Gene transcription is the first step in the expression of the genetic information and a focal point for cellular regulation. Our goal is to understand the molecular mechanisms of gene transcription and the principles of genomic regulation in eukaryotic cells. We use integrated structural biology and complementary functional studies to unravel the three-dimensional and functional architecture of large macromolecular complexes involved in transcription. We also develop functional genomics methods and computational approaches to unravel the cellular mechanisms of genomic regulation. These efforts led to a first molecular movie of transcription and provided insights into gene-regulatory cellular networks. Together, these efforts shape the emerging fields of genome biology and molecular systems biology. Our aim is to understand the functional genome as a regulatory network based on the underlying structural and molecular mechanisms.

Selected Recent Publications

Rolf Daniel

Professor of Genomic and Applied Microbiology

- 2013 – present: Speaker “North German Center of Microbial Genomics” (Norddeutsches Zentrum für Mikrobielle Genomforschung, NZMG)
- 04/2012 – present: Managing Director of the Institute of Microbiology and Genetics, Georg August University Göttingen
- 02/2012 – present: Full Professor (W3) Genomic and Applied Microbiology, Head of the Dept. of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg August University Göttingen
- 2013: Norddeutscher Wissenschaftspreis (Northern German Science Award)
- 05/2008 – 01/2012: Acting Director of the Department of Genomic and Applied Microbiology and Head of the “Göttingen Genomics Laboratory”, Georg August University Göttingen
- 06/1996 – 04/2008: Group Leader, Department of Genomic and Applied Microbiology, Georg August University Göttingen
- 06/1995 – 05/1996: Research Fellow, University of California (Berkeley, USA), Institute of Molecular and Cell Biology, Head: Prof. Dr. Randy Schekman
- 05/1994 – 05/1995: Research Fellow, Georg August University Göttingen, Department of General Microbiology

Major Research Interests

Research foci are cultivation-independent nucleic acids-based metagenomics and metatranscriptomics of complex microbial assemblages and recovery of novel genes and gene products from environmental samples such as soil, sediments, ice, and biofilms. The metagenomic screenings comprised function-based as well as sequence-based approaches. This work has led, e.g., to the successful identification and characterization proteases, cellulases, oxidoreductases, dehydratases, lipases, and DNA polymerases from metagenomes. To gain insights into the genomes of the uncultivated microorganisms and to determine metabolic potential and key functions of microbial communities in the studied environments direct sequencing and annotation of metagenomic DNA and cDNA (mRNA), and comparative genomics are carried out. Other lines of research include whole-genome sequencing, transcriptomics and functional genomics of archaea, bacteria, and microbial communities. The majority of the analyzed organisms is of industrial importance or pathogenic. The group also develops novel bioinformatic tools for data analysis and visualization.

Selected Recent Publications

Matthias Dobbelstein

Professor of Molecular Oncology

• Dr. med., University of Munich, 1993
• Postdoctoral fellow, Princeton University, USA, 1993 – 1996
• Group leader, University of Marburg, 1997 – 2004
• Professor of Molecular Oncology, University of Southern Denmark, Odense, 2004 – 2005
• Head of the Department of Molecular Oncology, Georg-August-Universität Göttingen, since 2005

Major Research Interests

We are trying to understand the response of cancer cells to chemotherapy. In particular, we are analyzing the impaired replication of DNA and the damage response that results from injury to DNA. Our focus is on the signaling cascades driven by DNA damage, and on the activation of the tumor suppressor p53. Technologies include the use of large scale siRNA transfection, followed by automated fluorescence microscopy, and the analysis of DNA replication by incorporation of artificial nucleosides. As a disease model, we are investigating the response of colorectal cancer to therapy. On top of classical, DNA damaging chemotherapeutics, we are evaluating other broadly acting, yet non-genotoxic drug candidates, e.g. inhibitors of histone deacetylases and heat shock proteins. On long term, we are aiming at improving the response of tumor cells to chemotherapy by combining traditional and targeted therapeutic approaches.

Selected Recent Publications

Roland Dosch

Group Leader at the Dept. of Developmental Biochemistry

- 1994 – 1999 PhD with Prof. C. Niehrs, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- 1999 – 2003 Postdoc University of Pennsylvania, Philadelphia, USA
- 2004 – 2010 Junior group leader, University of Geneva, Switzerland
- since 2010 Group leader at the Dept. of Developmental Biochemistry, Georg August University, Göttingen

Major Research Interests

A fundamental principle of biological systems is their capacity to reproduce, which is not found in other domains of science such as chemistry or physics. In multicellular organisms like humans, this unique activity is achieved by gametes, egg and sperm. To prepare for the development of a novel organism after fertilization, the oocyte shows a fascinating organization into various compartments. The aim of our research is to understand the molecular mechanisms, which control the cellular organization of the oocyte. For our experiments, we take advantage of the zebrafish, which in recent years emerged as an outstanding vertebrate model to investigate molecular processes in vivo. We previously isolated a collection of mutations in key regulators, which show defects in the organization of the oocyte. We apply a combination of molecular genetics and cutting edge genomics such as next-generation-sequencing to identify the affected genes in these mutants. In the most interesting mutants, we started to characterize the molecular function of these essential genes. For this purpose, we incorporate biochemical methods with cell biological approaches e.g. imaging to explore the dynamics of protein localization in vivo. With these techniques, we discovered proteins controlling the assembly of RNA-granules as an example for a membrane-free compartment. Recently, we also analyzed membrane bound compartments and identified an important regulator of secretion. Our long-term goal is to understand the intricate molecular organization of the oocyte, which prepares it for fertilization and subsequent embryogenesis.

Selected Recent Publications

Jörg Enderlein

Professor of Physics

• 1981 – 86 Study of Physics at Ilya-Mechnikov-University Odessa
• 1991 PhD in Physical Chemistry (Humboldt-University Berlin)
• 2000 Habilitation in Physical Chemistry (University of Regensburg)
• 1996 – 97 PostDoc at Los Alamos National Laboratory (USA)
• 1997 – 2000 Assistant Professor (C1) at University of Regensburg
• 2001 – 2006 Heisenberg Fellow of the DFG at Forschungszentrum Jülich
• 2007 – 2008 Professor for Biophysical Chemistry at Eberhard-Karls-University Tübingen
• Since 2008 Professor for Biophysics at Georg-August-University Göttingen

Major Research Interests

Single molecule fluorescence spectroscopy and imaging, protein conformational dynamics and folding

Selected Recent Publications

Ivo Feußner

Professor of Biochemistry

- Diploma (Chemistry), Philipps-University, Marburg (Germany), 1990
- Dr. rer. nat., Philipps-University, Marburg (Germany), 1993
- Leader of an independent research group at the Institute for Plant Biochemistry (IPB), Halle/Saale (Germany), 1997 – 1999
- Habilitation (Biochemistry), Martin-Luther-University, Halle/Saale (Germany), 2000
- Leader of an independent research group at Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben (Germany), 2000 – 2002
- Since 2002 Professor of Biochemistry, Georg-August-University, Göttingen (Germany)
- Fellow of the Saxonian Academy of Sciences, Leipzig, Germany (2009)
- Fellow of the Academy of Sciences, Göttingen, Germany (2013)

Major Research Interests

The group is currently studying different aspects of the lipid metabolism of plants, algae, mosses and fungi. In this context we are primarily interested in the metabolism of structural lipids and lipid-derived signal transduction processes. For this purpose, we make use of both classical techniques as analytical chemistry and biochemistry as well as of modern approaches in the area of molecular genetics, including the generation of transgenic organisms (“gain-of-function”) or mutants (“loss-of-function”).

Biochemistry and function of oxylipin metabolism:

We are interested in physiological functions of lipid peroxidation processes. Thus we analyze the function of specific lipoxygenases, i.e. the role of their products, so-called oxylipins (oxygenated fatty acid derivatives), as signals or defence substances during biotic and abiotic stress. Lipid peroxidation reactions are analysed in general by metabolomic approaches and more specifically by studying the biosynthesis of aldehydes (fruit aromas) and hydroxy fatty acids (plant defence). Other studies deal with the role of oxylipins in plants, mosses and algae. In addition the catalytic mechanism of lipoxygenases and related dioxygenases is analysed.

Biochemistry of the biosynthesis of structural lipids:

Even in plants a huge number of different fatty acids are found. We are interested in enzymes which introduce new functionalities (i.e. double bonds at unusual positions or conjugated double bonds) in the fatty acid backbone in order to obtain new seed oils for biotechnological, nutritional and medical purposes. Moreover we study the biochemical pathways or networks that led to an increase in the seed oil content of oilseed crop plants and oleogenous algae. Two other projects deal with the biochemistry and function of sphingolipids in plants and fungi as well as with wax ester forming enzymes. In addition we aim to identify chemical signals by metabolomics approaches that are exchanged during the infection between Verticillium longisporum and Arabidopsis thaliana.

Selected Recent Publications

Ralf Ficner

Professor of Structural Biology

- Dr. rer. nat. (1992) and Postdoc (1993), Max Planck Institute for Biochemistry, Martinsried
- Postdoctoral fellow, EMBL Heidelberg, 1994 – 1996
- Junior Group Leader, University of Marburg, 1997 – 2000
- Appointed 2001 as Head of the Department of Molecular Structural Biology at the University of Göttingen

Major Research Interests

In order to understand the relationship between the three-dimensional structure and the cellular function of biological macromolecules we determine the structures of proteins and protein-RNA complexes by means of X-ray crystallography. Our current projects concern proteins involved in the splicing and modification of RNA and, as well, proteins required for the nucleocytoplasmic transport.

Selected Recent Publications

Kuhle B, Ficner R (2014) A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J 33: 2567-2563

Kuhle B, Ficner R (2014) elf5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J 33: 1177-1191

André Fischer

Professor for Psychiatry and Psychotherapy

- 2003 – 2006: Postdoctoral Associate in the lab of Li-Huei Tsai; Harvard Medical School, Department of Pathology, Boston, USA; Picower Center for Learning and Memory, M.I.T, Cambridge, USA
- since 2011: W3 Professor at the Department for Psychiatry and Psychotherapy, University Medical Center Göttingen
- since 2011: Speaker of the German Center for Neurodegenerative Diseases (DZNE) site Göttingen

Major Research Interests

The long-term goal of our research is to understand the cellular and molecular mechanisms underlying brain diseases and to develop neuroprotective and neurodegenerative therapeutic approaches. There is now accumulating evidence that on an individual level health or disease critically depends on the interaction between genes and environment. Epigenetic mechanisms such as histone-modification, DNA-methylation and non-coding RNA-mediated processes are key-regulators of gene-environment interactions. Importantly, such epigenetic mechanisms have recently been implicated with the pathogenesis of neurodegenerative and psychiatric diseases. Thus our current hypothesis is that deregulation of genome-environment interactions, especially via epigenetic gene-expression, is a key feature of neurodegenerative diseases such as Alzheimer’s disease. We combine studies in patient material, mouse and cellular models, behavioral, molecular, genetic, and bioinformatic techniques to address these questions.

Selected Recent Publications

Wolfgang Fischle

Group Leader at the MPI for Biophysical Chemistry

- Dr. rer. nat. (PhD), University of Tübingen, Germany, 2001
- Graduate Research Fellow, The J. David Gladstone Institute (UCSF), San Francisco, CA, USA, 1997-2001
- Postdoctoral Fellow, The Rockefeller University, New York, NY, USA, 2001-2005
- Damon Runyon Cancer Research Fellow, 2002-2005
- Head of the Chromatin Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, since 2006
- Professor of Cellular and Molecular Biology, KAUST, Thuwal, KSA since 2015

Major Research Interests

To sustain life in different environments cells and organisms must adjust to different conditions and external cues. In contrast to immediate and mostly transient responses to short-term stimuli, processes of long-term adaptation require lasting changes in gene expression patterns. Such epigenetic changes are controlled on the level of chromatin, the packaging form of eukaryotic genomes. Here, different DNA and histone modifications are associated with distinct functional states of chromatin.

Overall, our research aims to gain detailed, fundamental understanding of the processes that read and translate patterns of chromatin marks for mediating biological outcomes. Currently, we are tackling two main questions. A) How do histone modifications in conjunction with DNA methylation establish seemingly stable chromatin structures in response to internal and external cues? B) How do small cellular metabolites and signaling molecules tune the readout of chromatin marks? To address these problems we are constantly expanding our highly interdisciplinary approaches. These include advancing technologies for establishing and analyzing complex chromatin systems in vitro (biochemistry and biophysics), molecular and cellular biology for studying essential chromatin components and global analysis of modules of epigenetic regulation.

We strongly believe that by understanding the essential molecular control mechanisms of chromatin regulation we will ultimately be able to develop strategies for intervention of major diseases.

Selected Recent Publications

Christiane Gatz

Professor of Plant Molecular Biology

- Dr. rer. nat. (1985) at the Institute for Biochemistry, Technical University Darmstadt
- Postdoctoral fellow at the University of Wisconsin, Madison, USA (1985 – 1987)
- Habilitation in Molecular Genetics at the Freie Universität Berlin in 1992
- Professor at the University of Bielefeld (1993 – 1995)
- Alfried Krupp von Bohlen und Halbach-Award for young university professors (1994)
- Professor at the University of Göttingen since 1996

Major Research Interests

Our laboratory is interested in the molecular mechanisms establishing plant innate immunity. We focus on the elucidation of signal transduction mechanisms that lead to transcriptional reprogramming in the course of plant defense responses against bacteria and fungi. Plants have developed multiple layers of defense responses against pathogens. In general, infection of the model plant Arabidopsis thaliana with biotrophic pathogens (pathogens that exploit resources of living cells) leads to the activation of salicylic acid (SA)-mediated defense responses, whereas infection with necrotrophic pathogens (pathogens that kill cells to obtain access to nutrients) elicits jasmonic acid/ethylene (JA/ET)-dependent responses. If plants are infected by both types of pathogens, the SA pathway represses the JA/ET pathway (crosstalk). Members of the TGA family of transcription factors have been identified as essential regulators of both responses. While the SA-mediated mechanisms that activate TGA factors have been elucidated in considerable detail it has remained unknown how these factors mediate the negative effect of SA on the JA/ET response (Zander et al., 2010; Zander et al., 2014). In this context, we have identified the family of plant-specific ROXY-type glutaredoxins, which interact with TGA factors to influence defense responses (Ndakukong et al., 2007; Zander et al., 2012). A central question in our lab is as to how ROXYs regulate the activity of TGA factors. We combine genetic (e.g. analysis of mutants and double mutants, generation of mutants using the CRISPR/Cas genome editing system), molecular (e.g. gene expression analysis by real-time RT PCR), cell biological (subcellular localization and protein-protein-interaction studies in living cells) and biochemical (e.g. chromatin immunoprecipitation, biotin switch assays to study the in vivo redox state of proteins) approaches to gain novel insights into these complex mechanisms.

A further project analyzes the function of the JA receptor COI1 in the defense against the vascular pathogen Verticillium longisporum. Whereas COI1 usually promotes defense responses against necrotrophic fungi when activated by JA, it promotes susceptibility independently from JA in response to infection with V. longisporum (Ralhan et al., 2012). Our aim is to understand the activation and the downstream effects of this novel COI1 function. Moreover, we aim to elucidate the evolution of JA synthesis and COI1-dependent JA signaling in non-seed plants.

Selected Recent Publications

Dirk Görlich

Professor, Director at the Max Planck Institute for Biophysical Chemistry

- 1989 Diploma (Biochemistry), Martin-Luther-Universität in Halle
- 1990 – 1993 Graduate studies (Laboratory of T.A. Rapoport, Berlin)
- 1993 Dr. rer. nat. (Biochemistry) Humboldt-Universität Berlin
- 1996 – 2007 Research group leader at the ZMBH Heidelberg
- 2001 – 2007 Professor for Molecular Biology (Universität Heidelberg)
- 2007 – Director, Dept. Cellular Logistics, MPI for Biophysical Chemistry, Göttingen
- 2018 – 2019 Managing Director of the Institute

Major Research Interests

- Nuclear pore complexes, their function and assembly
- Hydrogels, “smart” materials, phase separations
- Structural biology
- Importins and Exportins, cargo recognition
- Recombinant antibodies, protein engineering
- Nanobodies, protein engineering

Selected Recent Publications

Christian Griesinger

Professor, Director at the Max Planck Institute for Biophysical Chemistry, Göttingen

- Dr. phil. nat. University of Frankfurt (1986, Prof. Dr. H. Kessler)
- Postdoctoral Fellow at Lab. for Physical Chemistry, ETH Zürich (1986 – 1989, Prof. Dr. R. R. Ernst)
- Full Professor for Organic Chemistry at the University of Frankfurt (1990 – 2000)
- Appointed as Director at the Max Planck Institute for Biophysical Chemistry (1999)

Major Research Interests

In the department, we develop NMR spectroscopic methods and apply them to the investigation of water soluble and membrane proteins, nucleic acids and their complexes as well as drug/target complexes. We are specifically focussing on the dynamics of biomolecules. Structural biology projects are performed in the context of signal transduction, ion channels, cytoskeletal proteins, enzymes and drug/target complexes using NMR as well as X-ray crystallography to characterize structure and dynamics. An applied project is the investigation of proteins involved in neurodegenerative diseases that are studied in the context of the CNMPB and involve NMR and other biophysical methods as well as chemical synthesis. Methods developments are aimed at pushing the limits of sensitivity for NMR spectroscopic detection (e.g. DNP), developing the measurement of structurally and dynamically relevant parameters, establishing methods to describe structural ensembles for folded and intrinsically disordered proteins. For solid state NMR investigations, pulse sequences that allow structure determination of uniformly labelled membrane proteins as well as oligomers and fibrils formed from proteins involved in neurodegenerative diseases have been successfully developed.

Selected Recent Publications

Uwe Groß

Professor of Medical Microbiology

- Professor of Bacteriology and Head, Institute of Medical Microbiology, University Medical Center Göttingen since 1999 (co-opted Professorship, Faculty of Biology since 2005)
- Professor of Medical Parasitology, University of Würzburg 1998/1999
- Postdoctoral fellow, UC Los Angeles, California, 1987 – 1989
- M.D., University of Hamburg 1987

Major Research Interests

The Institute of Medical Microbiology is trying to understand infectious diseases by linking applied and basic sciences, e.g. aspects of epidemiology and pathogenesis. In regards to bacteriology, we are focusing on the intestinal pathogens *Campylobacter jejuni* and *Clostridium difficile*, where we use molecular approaches to identify and characterize virulence-associated factors, such as those involved in invasion (*Campylobacter*) or in spore regulation (*Clos- tridium*). In addition, the epidemiology of both pathogens in different regions and environments is under investigation.

Fungal infections caused by *Candida* and *Aspergillus* is a second major research topic. Like in bacterial infections, antimicrobial resistances are an emerging threat in mycology as well. Therefore, we focus on analyzing the epidemiology and the mechanisms of antifungal resistances, but are also investigating fungal factors and mechanisms that are involved in pathogenesis of mycoses.

The protozoan parasite *Toxoplasma gondii* usually causes asymptomatic infections in immunocompetent adults leading to lifelong persistence especially in the brain and in muscle tissue. Infections are especially dangerous during pregnancy and in immuno-compromised individuals (i.e. patients suffering from AIDS). We are interested in the epidemiology of toxoplasmosis as well as in the cross-talk between the parasite and its host cell on a molecular level. Here, we investigate how the parasite (i) modulates the host cell capacity for MHC-restricted antigen presentation and (ii) inhibits apoptosis of the infected cell. Both mechanisms allow intracellular persistence.

Recently, we also started to develop the theme Global Health in regards to infectious diseases and cooperate with scientists from Ghana, Kenya, and Tanzania.

Selected Recent Publications

Jörg Großhans

Professor of Developmental Biochemistry

- 1993 Diplom Biochemistry, Tübingen
- 1993 – 1996 Doctoral research with C Nüsslein-Volhard, Max-Planck-Institut für Entwicklungsbioalogie, Tübingen
- 1997 – 2001 Post-doc with E Wieschaus, Princeton (USA)
- 2002 – 2008 ZMBH and Emmy-Noether research group, Heidelberg
- since 2009 Professor, Universitätsmedizin Göttingen

Major Research Interests

Biological structure formation and ageing.
Our group is interested in the molecular and cell-biological mechanisms how biological structures are formed. We analyse structure formation in the early Drosophila embryo employing genetical, biochemical and embryological experiments as well as live-imaging. Specifically we investigate how nuclear shape is determined and how the farnesylated protein Kugelkern is involved, how the cells are regularly arranged, how apical-basal polarity is established and how the number of synchronous cell divisions is robustly controlled. Based on our studies nuclear shape we have studied the function of the nuclear lamina and lamina proteins, such as lamin and Kugelkern, in ageing and stem cell proliferation and differentiation in the adult fly.

Selected Recent Publications

Further Information

http://www.gwdg.de/~jgrossh/
http://www.uni-goettingen.de/en/105241.html
Helmut Grubmüller

Professor, Director at the Max Planck Institute for Biophysical Chemistry

- 1994 Dr. rer. nat. (Physics), Technical University of Munich
- 1997 EMBO fellow at the Institute for Molecular Biology and Biophysics, Federal Institute of Technology (ETH) Zurich, Switzerland
- 1998 – 2003 Head of the Theoretical Molecular Biophysics Group at the Max Planck Institute for Biophysical Chemistry, Göttingen
- 2003 Associate Professor for Biomolecular Sciences at the École Polytechnique Fédérale de Lausanne (EPFL)
- 2003 - Director at the Max Planck Institute for Biophysical Chemistry, Göttingen, Head of the Theoretical and Computational Molecular Biophysics Department
- 2005 - Honorary Professor for Physics at the University of Göttingen

Major Research Interests

The question ‘How do proteins work?’ is our driving force. We study biomolecular dynamics and function by atomistic molecular dynamics and qm/mm simulations. Emphasis is on protein function, as well as on protein/DNA/RNA interactions.

Available projects address nuclear pore transport, the ribosome, molecular motors such as F-ATPase, protein unfolding as well as the interaction with radiation with a focus at single molecules, typically in close collaboration with experimental groups. The simulation of single molecule AFM experiments by force probe techniques helps us to reveal mechanisms of proteins function involving mechanical stress such as the muscular force sensor titin kinase, and so do improved methods to calculate thermodynamic quantities from simulations. We are continuously advancing our simulation techniques and scalability on massively parallel computers. The group of ca. 20 PhD students and postdocs shares a strong background mainly in physics, and scientific computing, but also in chemistry and biology. We enjoy exclusive access to a high-performance linux cluster of ca. 3000 processor cores.

Selected Recent Publications

Heidi Hahn

Professor of Molecular Developmental Genetics

- Dr. med., University of Würzburg, 1992
- Postdoctoral Fellow, National Institutes of Health, Bethesda, Maryland, USA (1993 – 1998)
- Junior Group Leader (BioFuture), Technical University of Munich (1999 – 2000)
- Professor of Molecular Developmental Genetics, University of Göttingen since 2001

Major Research Interests

Cancer is a disease that results from inappropriate cell division induced by hyperproliferation. In many cases, the development of cancer is associated with genes or signaling pathways important for patterning during embryogenesis. We investigate the role of the Hedgehog/Patched (Hh/Ptch) signaling cascade in the development of solid tumors. The focus is on rhabdomyosarcoma and basal cell carcinoma. In addition, we are investigating the role of Hh/Ptch signaling in cutaneous squamous cell carcinoma and adenoma of the pituitary gland.

The first aim is the discovery of molecular and cellular events that trigger the initiation of Hh associated tumors. The second aim is to elucidate the function Hh signaling during tumor progression. The third goal is the identification of drugs that target Hh/Ptch-associated solid tumors. To test the anti-tumor activity of the drugs we use tumor-bearing Ptch mutant mice.

Selected Recent Publications

Stefan Hell

Professor, Director at the Max Planck Institute for Biophysical Chemistry

- 1987 Diploma in Physics, University of Heidelberg (1.0)
- 1990 Doctorate in Physics, University of Heidelberg (summa cum laude)
- 1991 – 1993 Postdoctoral Researcher, EMBL (European Molecular Biology Laboratory)
- 1993 – 1996 Principal Investigator, Laser Microscopy Group; University of Turku, Finland
- 1996 Habilitation in Physics, University of Heidelberg; Physics teaching since 02/1996
- 1997 – 2002 Head, Max-Planck Junior Group High Resolution Optical Microscopy, at the Max Planck Institute for Biophysical Chemistry Göttingen, Germany
- since 10/2002 Director at the Max Planck Institute for Biophysical Chemistry, Head of Department of NanoBiophotonics
- since 12/2003 Apl. Prof., Faculty of Physics, University of Heidelberg
- since 12/2003 Head of High Resolution Optical Microscopy Division, DKFZ Heidelberg
- since 01/2004 Hon. Prof., Faculty of Physics, University of Göttingen
- 2014 Nobel Prize in Chemistry
- Since 11/2015 Director at the Max Planck Institute for Medical Research, Head of Department of Optical Nanoscopy

Major Research Interests

Optical microscopy beyond the diffraction barrier with far-field optics. Invention of STED, RESOLFT, GSDIM and 4Pi microscopy and related techniques.

Selected Recent Publications

Kai Heimel

Professor of Microbial Cell Biology

- Since 04/2012: Junior Professor for Microbial Cell Biology, Georg-August-University Göttingen
- 2012: Teaching stand-in for W3 Professorship of Genetics and Cell Biology, Karlsruhe Institute of Technology (KIT)
- 2010 – 2011: Postdoctoral fellow at the Karlsruhe Institute of Technology (KIT)
- 2010: Dr. rer. nat., Philipps-University Marburg
- 2005 – 2010: Doctoral thesis, Max-Planck Institute for Terrestrial Microbiology, Marburg and Karlsruhe Institute of Technology (KIT) (Germany)
- 2000 – 2005: Diploma (Biology), Philipps-University Marburg (Germany)

Major Research Interests

Research in our laboratory is focused on the Unfolded Protein Response (UPR) in development and disease signaling. Cells need to re-adjust and modify their cellular programs in response to a wide range of biotic and abiotic stimuli. The UPR is a highly conserved cellular response to maintain homeostasis of the endoplasmic reticulum (ER). In situations of increased demands for protein production and secretion, potentially harmful un- or mis-folded proteins accumulate in the ER and activate the UPR pathway. Defects in UPR signaling are associated with a wide range of developmental, metabolic and neurodegenerative disorders. Besides the role as a cellular stress response, recent work demonstrated that the UPR pathway is also involved in control of developmental processes. We uncovered that UPR signaling in the phytopathogenic fungus Ustilago maydis is required for disease development and directly coupled to the pathways that control parasitic growth of the fungus. Our future studies will aim to characterize these connections on a molecular level and further explore the role of UPR signaling in controlling cellular behavior and responses to different environments.

Selected Recent Publications

Claudia Höbartner

Professor, Institute for Organic and Biomolecular Chemistry

• Dr. rer. nat. (PhD), University of Innsbruck, Austria, 2004
• Erwin Schrödinger postdoctoral Fellowship, FWF (Austrian Science Fund), University of Illinois at Urbana-Champaign, USA, 2005 – 2007
• Hertha Firnberg Fellowship, funded by FWF & bmwf (federal ministry of science and research), University of Innsbruck, Austria, 2007 – 2008
• Independent Research Group Leader, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, since 2008
• Professor at the Institute for Organic and Biomolecular Chemistry, University of Göttingen, since 2014

Major Research Interests

Our research is focused on the chemistry and biochemistry of natural and artificial nucleic acids.

Functional nucleic acids with new properties can be identified in the laboratory by in vitro selection. We use this method to develop catalytic DNA and RNA for labeling and ligation reactions of biomolecules, and we explore functional and structural properties of deoxyribozymes and fluorogenic aptamers. Recently we reported the first crystal structure of a catalytic DNA which allowed mechanistic insights into the regioselectivity of DNA-catalyzed RNA ligation and enabled engineering of DNA enzymes for substrates that could previously not be used in DNA-catalyzed ligation.

In addition, we investigate natural modifications of DNA and RNA and develop labeling methods for their biochemical and spectroscopic detection, with particular emphasis on the emerging field of posttranscriptional RNA modification.

Selected Recent Publications

Reinhard Jahn

Professor, Director at the Max Planck Institute for Biophysical Chemistry

- Dr. rer. nat. 1981, University of Göttingen
- Assistant Professor, The Rockefeller University, New York (USA) 1985
- Junior Group leader, Max Planck Institute for Psychiatry, Martinsried, 1986
- Associate Professor of Pharmacology and Cell Biology, Yale University, and Investigator, Howard Hughes Medical Institute, New Haven (USA) 1991
- Professor of Pharmacology and Cell Biology, Yale University, New Haven, 1995
- Director, Max Planck Institute for Biophysical Chemistry, Göttingen, 1997

Major Research Interests

Our group is interested in the mechanisms of membrane fusion, with the main emphasis on regulated exocytosis in neurons. Intracellular membrane fusion events are mediated by a set of conserved membrane proteins, termed SNAREs. For fusion to occur, complementary sets of SNAREs need to be present on both of the fusing membranes, which then assemble in a zipper-like fashion to initiate membrane merger. The neuronal SNAREs are among the best characterized. They are the targets of the toxins responsible for botulism and tetanus, and they are regulated by several additional proteins including synapto
tagmin, the calcium sensor for neurotransmitter release. To understand how these proteins mediate fusion, we study their properties in vitro with biochemical and biophysical approaches using native and artificial membranes.

In a second set of projects, we are interested in the mechanisms by which synaptic vesicles sequester and store neurotransmitters. Uptake is mediated by specific vesicular neurotransmitter transporters that are energized by an electrochemical proton gradient across the membrane. Presently we aim for a better understanding of the transport mechanisms using a variety of biochemical and biophysical approaches including imaging of single vesicles. Finally, we use quantitative proteomics to better understand how the presynaptic protein network contributes to the regulation of synaptic release, focusing on protein phosphorylation.

Selected Recent Publications

Stefan Jakobs

Professor of High Resolution Microscopy in Neurodegenerative Diseases

- 1995 – Diploma, University of Kaiserslautern
- 1995 – 1999 Graduate studies (MPI for Plant Breeding Research, Cologne, Germany and John-Innes-Centre, Norwich, GB)
- 1999 Dr. rer. nat. University of Cologne
- 1999 Postdoc (Laboratory of J. Schell/K. Palme, MPI for Plant Breeding Research, Cologne)
- 1999 – 2005 Postdoc (MPI for Biophysical Chemistry, Laboratory of S.W. Hell)
- 2005 – Research group leader at the MPI for Biophysical Chemistry
- 2007 Habilitation (Botany/Cell Biology) at the Georg-August-University Göttingen
- 2010 – Professor (W2) of High Resolution Microscopy in Neurodegenerative Diseases, University of Göttingen Medical School, Dept. of Neurology

Major Research Interests

Our two major research interests are the investigation of the nanoscale architecture and dynamics of mitochondria and the analysis of reversibly switchable fluorescent proteins (RSFPs) as probes for super-resolution microscopy. Mitochondria are essential organelles in all eukaryotic cells and their dysfunction is involved in many devastating (neurodegenerative) diseases. We want to understand the organization of mitochondria on the nanoscale in healthy and challenged cells and investigate the molecular mechanisms that determine their intricate structure. We utilize a wide array of techniques, including molecular biology, biochemical methods as well as electron and super-resolution microscopy.

RSFPs are fluorescent proteins that may be switched by light between a non-fluorescent and a fluorescent state. Their unique properties open up numerous applications in microscopy and cell biology. We investigate the molecular switching mechanisms and aim to improve the properties of these fascinating proteins as probes for live-cell super-resolution microscopy.

Selected Recent Publications

Große L, Wurm CA, Brüser C, Neumann D, Jans DC, Jakobs S (2016) Bax assemblies into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J 35: 402-413

Andreas Janshoff

Professor of Biophysical Chemistry

- 1987 – 1989 Studies of Biology at the University of Münster
- 1989 – 1994 Studies of Chemistry at the University of Münster, with honor
- 1994 – 1997 PhD thesis under supervision of Prof. Dr. H.-J. Galla
- 1997 – 1998 Postdoctoral Researcher at the Scripps Research Institute (La Jolla, CA, USA)
- 1999 – 2001 Habilitation in Biochemistry at the University of Münster in the group of Prof. Dr. H.-J. Galla and Prof. Dr. H. Fuchs
- 2001 – 2006 Associate Professor (C3) for Physical Chemistry at the University of Mainz
- 2006 – 2008 Full Professor (W3) for Biophysical Chemistry at the University of Mainz
- since 2008 Full Professor (W3) for Biophysical Chemistry at the University of Göttingen

Major Research Interests

- Membrane Biophysics
- Cell mechanics
- Sensor design
- Single-molecule force spectroscopy

Selected Recent Publications

Rother J, Nöding H, Mey I, Janshoff A (2015) Ezrin is a Major Regulator of Membrane Tension in Epithelial Cells. Scientific Reports 5: 14700

Steven Johnsen

Full Professor for Translational Cancer Research

- 1999 – 2002 Ph.D. Mayo Clinic College of Medicine, Rochester, MN, USA
- 2003 – 2006 Doctoral Fellow, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
- 2006 – 2007 Post-Doctoral Fellow, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- 2007 – 2012 Assistant Professor in Molecular Oncology, University of Göttingen Medical Faculty, Göttingen, Germany
- 2012 – 2014 Assoc. Professor in Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Since 2014 Professor for Translational Cancer Research, University Medical Center Göttingen, Göttingen, German

Major Research Interests

Cell fate determination during normal physiological processes requires the integration of multiple extrinsic and intrinsic signaling pathways which ultimately converge on the genome to induce stable changes in gene expression. These gene expression changes require an intricate interplay between sequence-specific transcription factors and epigenetic regulatory proteins. Importantly, many major tumor genome sequencing projects have uncovered frequent alterations in epigenetic regulatory proteins, suggesting that genetic changes occurring during tumorigenesis or tumor progression help promote the effects elicited by the activation of oncogenic signaling to reverse cell differentiation programs and lead to pathogenesis. Our group is examining the role of specific epigenetic regulators both in both normal physiological differentiation (e.g., in human osteoblasts) and in cancer (especially colorectal and pancreatic cancer, but also lung, prostate and breast cancer). In order to achieve this we utilize a variety of cell culture and molecular techniques to perform genome- and transcriptome-wide analyses of gene regulatory function and complement these with in vivo analysis of conditional gene knockouts and patient samples. Our goal is to gain a thorough understanding of the molecular epigenetic defects in specific subtypes of cancer which will allow us to uncover targeted therapy approaches which can be used in a “precision medicine” approach to treat cancer.

Selected Recent Publications

Dieter Klopfenstein

Junior Group Leader at the Center for Molecular Physiology of the Brain, University of Göttingen

• Dr. phil. nat. (Ph.D.) University of Basel, 1999
• Postdoctoral fellow at the University of California San Francisco, 1999 – 2003
• Since 2003 head of an independent Junior Research Group

Major Research Interests

The long-range transport of membrane organelles in neurons depends primarily upon microtubules and motor proteins that move unidirectionally along these tracks. One type of microtubule-based motor proteins powering membrane transport is the kinesin superfamily. We are interested in how these motors achieve specificity in cargo binding, elicit membrane transport, and the regulation of transport activity. In addition, the fascinating organization of the muscle's sarcomere guides our research in understanding the orchestration of individual constituents in muscle contraction. Using fluorescently tagged motor and vesicle markers we investigate these questions in the nervous system of the nematode C. elegans serves us as a model system for microscopic tools (confocal, TIRF, FRET FLIM) and biochemical transport assays in vitro.

Selected Recent Publications

Wilfried Kramer

Privatdozent Molecular Biology and Genetics

- Diploma (Biology), University of Cologne, Germany, 1982
- Dr. rer. nat., University of Cologne, Germany, 1986
- Postdoctoral Fellow, University of California, Berkeley, USA, 1986 – 1989
- Habilitation in Molecular Biology and Genetics, University of Göttingen, Germany, 2000
- At the Dept. of Molecular Genetics since 1989

Major Research Interests

In the Department of Molecular Genetics, headed by Prof. Dr. H. Krebber, I try to identify new factors that might be involved in the export of mRNA from the nucleus in *Saccharomyces cerevisiae*. To this end, ordered mutants arrays are screened for genetic interactions with selected mutants by the so called SGA technique, which makes use of the genetic features offered by budding yeast to rapidly construct double mutants and compare their growth with that of single mutants. Furthermore, we want to extend these studies in different collaborations to microscopic screenings of those mutant arrays for export defects using automated microscopes. In a collaboration with Prof. Dr. S. Emmert from the medical faculty we want to analyse the function of the yeast *MPH1* gene and of its human homologue *FANCM*. The latter is a determining factor of the hereditary disease Fanconi anemia, which is – besides other symptoms - characterised by chromosome instability and increased incidence of cancer. Both are associated to homologous recombination and at least Mph1 is very likely involved in the error-free bypass of lesions, which are caused by DNA damaging agents and are blocking DNA replication, posing a very serious threat to the survival of the cell. Understanding these cellular responses to DNA damage will allow a better insight into central processes involved in the malignant transformation of cells.

Selected Recent Publications

Heike Krebber

Professor of Molecular Genetics

• 1996 Dr. rer. nat., Deutsches Krebsforschungszentrum, DKFZ, Heidelberg (Germany)
• 1996 Visiting Scientist, Weizman Institute of Science, Rehovot (Israel)
• 1996 – 1999 Scientist, Dana-Farber Cancer Institute, Harvard Medical School, Boston (USA)
• 1999 – 2010 Junior group leader, Institute für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg (Germany)
• 2005 Habilitation in Molecular Biology
• 2006 Heisenberg Fellow
• since 2010 Professor for Molecular Genetics, Georg-August Universität Göttingen (Germany)

Major Research Interests

Messenger RNAs are transcribed in the nucleus and translated in the cytoplasm of eukaryotic cells. It has to be assured that intron containing pre messenger RNAs are retained in the nucleus until processing is completed. Only fully processed and spliced mRNAs are transported and translated. The otherwise resulting gene products can be toxic to cells and harmful to organisms. Several examples exist where not fully processed pre-mRNAs reach the cytoplasm, resulting in diseases like cancer or neurodegenerative diseases. Our projects aim to identify and characterize the requirements for mRNA processing, transport and translation. Moreover, we study the principles of mRNA quality control. Interestingly, proteins of the nuclear quality control machinery also bind to noncoding RNAs. Their functions are the focus of a second topic in the lab. Saccharomyces cerevisiae has been proven to be a useful model organism for eukaryotic cells and we use a combination of genetics, biochemistry and cell biology to uncover these processes.

Selected Recent Publications

Wu H, Becker D, Krebber H (2014) Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance. Cell Rep 8: 1-9

Volker Lipka

Professor of Plant Cell Biology

- Dr. rer.nat. at the Department for Plant Molecular Biology, Technical University Aachen, 1999
- Postdoctoral fellow at the Sainsbury Laboratory, John Innes Centre, Norwich, UK, 1999 – 2000
- Postdoctoral fellow at the Max-Planck Institute for Plant Breeding Research, Cologne, 2000 – 2004
- Leader of an independent research group at the Department for Plant Biochemistry, Centre for Plant Molecular Biology, University of Tübingen, 2004 – 2007
- Leader of an independent research group at the Sainsbury Laboratory, John Innes Centre, Norwich, UK, 2007 – 2009
- Professor at the University of Göttingen since 2009

Major Research Interests

Our laboratory is interested in the molecular analysis of plant innate immunity. Our research is focused on 1) the molecular dissection of mechanisms that control activation of basal defence in the plant model Arabidopsis thaliana 2) the analysis of defence mechanisms that contribute to resistance against fungal pathogens 3) the identification of fungal effector molecules that interfere with the plant defence machinery and allow host plant colonization

In nature, plants are constantly exposed to above- and below-ground attack by a vast array of potential pathogens. However, most plants are immune to the majority of would-be pathogens and susceptible to only a relatively small number of adapted microbes. Using a novel plant-fungus interaction model system we recently identified several molecular components that are required for the activation (Gimenez-Ibanez et al., 2009) and execution of basal plant defence (Collins et al., 2003; Lipka et al., 2005; Stein et al., 2006; Kwon et al., 2008; Lipka et al., 2008). As a consequence, receptor-mediated recognition, pathogen-induced intracellular transport processes, dynamic organelle translocation and cytoskeletal rearrangements represent major research topics in our department. Suppression of these defence mechanisms is a key requirement for adapted pathogens and we recently began studies to identify secreted fungal effector molecules that are likely to be involved. We combine genetic, cell, molecular and biochemical experimental strategies to gain novel insights into these complex mechanisms.

Selected Recent Publications

Reinhard Lührmann

Professor, Director at the Max Planck Institute for Biophysical Chemistry

- Dr. rer. nat (Ph. D.), University of Münster (1975)
- Professor of Biochemistry and Molecular Biology at the University of Marburg (1988 – 1999)
- Director, Dept. of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen (since 1999)
- Honorary Professor at the Georg August University of Göttingen

Major Research Interests

Most metazoan pre-mRNAs contain multiple introns and exons. In order to generate mature mRNA, the introns must be excised from the pre-mRNA, a process termed pre-mRNA splicing. In many cases, alternative splicing generates different mRNAs from a single pre-mRNA by the regulated removal of different sections of the RNA, a process which greatly expands the complexity of the repertoire of proteins that can be expressed from relatively small genomes. Splicing is catalysed by a large macromolecular machine, termed the spliceosome which consists of the small nuclear RNAs (U1, U2, U4, U5 and U6) and more than 150 proteins, 50 of which are associated with the snRNAs to form snRNPs.

In our laboratory, intense efforts are focussed on understanding how the spliceosome recognizes and binds the intron ends and discriminates them from exons. This is an especially confounding problem in metazoa because, in contrast to lower eucaryotes such as yeast, pre-mRNA introns are often extremely long (104-105 nucleotides), while exons are generally small (less than 300 nucleotides). Another major goal of our research is the elucidation of the mechanisms by which the spliceosome assembles into a catalytically active machine and catalyses intron excision. None of the building blocks of the spliceosome contains an active site. Instead, the catalytically active domain must be assembled anew on to each intron, a highly dynamic process which entails dramatic structural rearrangements of the RNP structure of the spliceosome, and which is orchestrated by the successive action of more than 10 enzymes such as RNA helicases and GTPases, as well as by posttranslational phosphorylation of a multitude of spliceosomal proteins. Our studies involve a large number of experimental approaches, including biochemical purification of entire spliceosomes or large protein ensembles, and characterization of their proteins by mass spectrometry; RNA biology methods such as enzymatic engineering of RNA molecules, RNA structure probing and RNA interference methods; production of recombinant proteins and antibodies; procedures for the investigation of protein-protein and protein-RNA interactions in vitro and in vivo; and biophysical methods such as fluorescence spectroscopy.

Finally, we are investigating the 3D structure of purified spliceosomes or major building blocks thereof using electron microscopic approaches and X-ray crystallography. Our studies on the regulatory mechanisms of constitutive and alternative pre-mRNA splicing involve mainly mammalian systems. As the basic mechanisms of splicing catalysis appear to be evolutionarily highly conserved, we are also taking advantage of molecular genetic approaches in baker yeast to elucidate the structure and function of the catalytic core domain of the spliceosome.

Selected Recent Publications

Burkhard Morgenstern

Professor of Bioinformatics

- 1993 Diploma (Mathematics), LMU München
- 1996 PhD (Dr. Math.), Universität Bielefeld
- 1997 – 1998 Visiting Scientist, North Carolina State University, Raleigh, NC, USA
- 1998 – 2000 RPR/Aventis, Dagenham, Essex, UK
- 2000 – 2001 MIPS, MPI fuer Biochemie, Martinsried and GSF, Neuherberg
- 2001 – 2002 Group leader and faculty member at International Graduate School in Bioinformatics and Genome Research, Universität Bielefeld
- Since 2002 Professor of Bioinformatics, Universität Göttingen

Major Research Interests

The focus of our research work is algorithm and software development for nucleic acid and protein sequence analysis; the multiple-alignment program “DIALIGN” and the gene-finding program “AUGUSTUS” are widely used tools that have been developed in our department. More recently, we started to work on alignment-free approaches to comparative sequence analysis, here we developed the tools “kmacs” and “spaced words”.

Other areas of research in our department include: metabolomics and mass, spectroscopy data analysis, phylogeny reconstruction, metagenomics, motif discovery and remote homology detection using machine learning methods, genome annotation for prokaryotes, recombinations in viral genomes and HIV classification using coalescent theory.

Selected Recent Publications

Tobias Moser

Professor of Auditory Neuroscience

- MD University of Jena, 1995
- Postdoc with E. Neher at the MPI for Biophysical Chemistry, 1994 – 1997
- Junior Group Leader at the MPI for Biophysical Chemistry, Göttingen 1997 – 2001
- Residency in Otolaryngology, University Medical Center Göttingen 1997 – 2002
- Group Leader at the Department of Otolaryngology, University Medical Center Göttingen since 2001
- Research Group Leader at MPI for Biophysical Chemistry, MPI of Experimental Medicine and German Primate Center, Göttingen since 2014
- Director, Institute for Auditory Neuroscience, University Medical Center Göttingen 2015

Major Research Interests

Auditory Neuroscience - Synaptic Physiology and Pathophysiology – Audiology and Neuroprosthetics

Our work focuses on the molecular physiology and pathophysiology of sound encoding at the hair cell ribbon synapse and its restoration. We have physiologically and morphologically characterized synapses of wild-type and mutant mice with defects in hair cell synaptic coding from the molecular to the systems level. This way we have contributed to the understanding of structure and function of the hair cell ribbon synapse and co-initiated the concept of auditory synaptopathy. Molecular dissection and detailed physiological characterization of ribbon synapse function employ a spectrum of molecular, biophysical, physiological, psychophysical and clinical approaches. Towards restoration of hearing we pursue the optogenetic stimulation of cochlea and gene replacement therapy.

Selected Recent Publications

Klaus-Armin Nave

Professor of Molecular Biology, Director at the Max Planck Institute of Experimental Medicine

- 1987 PhD, University of California, San Diego
- 1987 – 1991 Postdoc, The Salk Institute, La Jolla, California
- 1991 Junior Group Leader, ZMBH, University of Heidelberg
- 1998 Professor of Molecular Biology (C4), ZMBH, University of Heidelberg
- 2000 Director, Department of Neurogenetics, Max Planck Institute for Experimental Medicine Göttingen and Professor of Biology, University of Heidelberg

Major Research Interests

We are interested in the mechanisms of neuron-glia interactions in the higher nervous system, and in the genes that are required for normal glial cell function. Here, transgenic and mutant mice have become important to study developmental processes as well as genetic diseases. For example, oligodendrocytes are glial cells highly specialized for enwrapping CNS axons with multiple layers of membranes, known to provide electrical insulation for rapid impulse propagation. We found that oligodendrocytes are also essential for maintaining the long-term integrity of myelinated axons, independent of the myelin function itself. The mechanisms by which oligodendrocytes support long-term axonal survival are still under investigation. The importance of glial cells as the “first line of neuroprotection”, however, is illustrated by several myelin-associated diseases in which axonal neurodegeneration contribute to progressive disability. These range in humans from peripheral neuropathies (CMT1) to spastic paraplegia (SPG2), and presumably multiple sclerosis (MS) and certain forms of psychiatric disorders. We are developing transgenic animal models for some of these diseases, in order to dissect the underlying disease mechanisms and, in the case of CMT1A, have used these models to design novel therapeutic strategies.

The glial “decision” to myelinate an axonal segment is partly controlled by the axon itself, but the signaling mechanism is not understood. We have found that axonal neuregulin-1 (NRG1) is the major determinant of myelination in the peripheral nervous system. We are now investigating NRG1 dysregulation also in CNS myelination, using quantifiable behavioural functions in mice. By combining genetics with environmental risk factors for schizophrenia (in collaboration with H. Ehrenreich) we will explore the hypothesis that NRG1, a known human schizophrenia susceptibility gene, points to an important role of myelinating glia in some psychiatric disorders.

Selected Recent Publications

Vladimir Pena

Research Group Leader at the MPI for Biophysical Chemistry

- Study of biochemistry at the University of Bucharest (1995 – 2000)
- Research assistant with Stefan Szedlacsek at the Institute of Biochemistry, Bucharest (1999 – 2001)
- PhD with Klaus Scheffzek at the European Molecular Biology Laboratory (EMBL), Heidelberg (2001 – 2005)
- Postdoctoral fellow with Markus Wahl at the Max Planck Institute (MPI) for Biophysical Chemistry, Göttingen (2006 – 2010)
- Group Leader in the Department of Reinhard Lührmann, MPI Göttingen (2010 – 2013)
- Research Group Leader at the MPI, Göttingen (since 2014)

Major Research Interests

The majority of genes in higher eukaryotes contain protein-coding exons that can be joined in a combinatorial fashion. The process, termed pre mRNA splicing, is an essential step in gene expression, and it expands tremendously the proteome and the complexity of an organism. Our goal is to understand the structural basis of pre-mRNA splicing. Here we place particular emphasis on the spliceosome’s regulation, as well as on the misregulation that causes various diseases.

DNA catalysts are an increasingly important topic in the work pursued in our laboratory. The surprisingly complex fold that these molecules adopt raises questions about the structural importance of DNA in the cell, and it enables us to manipulate the molecules’ properties for technological applications. For our investigations we make use of biochemistry, X ray crystallography and – increasingly – electron microscopy.

Selected Recent Publications

De I, Schmitzova J, Pena V (2016) The organization and contribution of helicases to RNA splicing. WIREs RNA 7(2): 259-74

Tomas Pieler

Professor of Biochemistry

- Dr. rer. nat. Biochemistry, Freie Universität Berlin, 1984
- Guest Investigator, Rockefeller University, New York (1985/86)
- Heisenberg fellow, Freie Universität Berlin and Rockefeller University, New York (1986/87)
- Professor of Biochemistry, Georg-August-Universität Göttingen (since 1992)
- Head of the Department of Developmental Biochemistry, Georg-August-Universität Göttingen

Major Research Interests

The differentiation of complex organisms has its origin in the asymmetric distribution of regulatory proteins or of the corresponding mRNAs in the egg, as well as in a complex system of cell/cell communication events via extracellular signalling molecules during early stages of embryogenesis. The genes that encode for these different activities form functional networks which provide the basis for the genetic programming of embryonic development. Our primary research interest is in the identification of such regulatory genes and networks in vertebrates, as well as in the definition of their regulation and function on the molecular level. For this purpose, we use *Xenopus laevis*, a frog from South Africa, as a model system. As a traditional object in experimental embryology and in comparison with other experimental systems such as the mouse, use of *Xenopus* offers a number of practical advantages. Oocytes and embryos are easy to collect in large numbers, they are easy to manipulate by relatively simple techniques, also because embryonic development proceeds in the petridish, and, more recently, it has even become possible to generate hundreds of transgenic frogs within a single experimental day. The research topics that we are focussing on are:

- Transport and function of vegetally localized maternal mRNAs
- Organogenesis: formation of pancreas and liver in vertebrate embryos
- Early neural development: primary neurogenesis
- Germ cell specification and migration

Selected Recent Publications

Stefanie Pöggeler

Professor of Genetics of Eukaryotic Microorganisms

- 1993 Dr. rer. nat., Ruhr-Universität Bochum
- 1993 – 1995 Research associate
- 1995 – 2001 Postdoctoral research fellow and group leader
- 1997 Visiting Scientist, Institut de Génétique et Microbiologie, Laboratory of Dr. D. Zickler, Université Paris-Sud, Orsay, France
- 2000 Habilitation (Botany), Ruhr-Universität Bochum
- 2001 – 2003 Associate Professor of Botany (stand-in), University of Münster
- 2003 – 2006 University lecturer (Hochschuldozentin) and group leader, Ruhr-Universität Bochum
- since 2006 Associate Professor of Genetics of Eukaryotic Microorganisms, Georg-August-Universität Göttingen

Major Research Interests

Fruiting-body development in filamentous ascomycetes
Fruiting-body development in filamentous ascomycetes is a complex cellular differentiation process that requires special environmental conditions and is controlled by many developmentally regulated genes. We are interested in the genes regulating this development process. We use the homothallic (self-fertile) ascomycete *Sordaria macrospora* as a model organism. Numerous mutants which are blocked at various stages of fruiting-body development have been generated and molecular genetic procedures have been applied to isolate genes involved in fruiting-body development. In addition to mutants generated by chemical mutagenesis, several mutants affecting fruiting-body development were produced by knock-out of mating-type genes, pheromone and receptor genes, as well as genes involved in autophagy and bicarbonate metabolism.

Autophagy in filamentous ascomycetes
Autophagy is defined as a tightly controlled non-selective degradation process in which eukaryotic cells digest their own proteins and organelles in response to starvation or stress conditions. In filamentous ascomycetes, autophagy is involved in various developmental processes. However, the exact role of autophagy in multicellular fruiting-body development is largely unknown.

Using a reverse genetics approach, we have recently shown that the autophagy genes *Smag8* and other conserved genes required for core functions of the selective and non-selective autophagic machinery are essential for fruiting-body development in the filamentous ascomycete *Sordaria macrospora*. Our aim is to understand how selective autophagy contributes to vegetative growth and fruiting-body development in filamentous ascomycetes.

Selected Recent Publications

Stefan Pöhlmann

Professor, Head of the Infection Biology Unit, German Primate Center

- 2000: Ph.D., Friedrich-Alexander-University Erlangen-Nürnberg
- 2000 – 2003: Postdoctoral Fellow, University of Pennsylvania
- 2007 – 2010: Professor for Experimental Virology, Hannover Medical School
- 2010: Professor for Infection Biology at Georg-August-University Göttingen (Brückenprofessor) and Head of the Infection Biology Unit of the German Primate Center

Major Research Interests

The Infection Biology Unit is studying virus-host cell interactions and their contribution to viral spread and pathogenesis in the host. One focus of our work is on activation of viruses by host cell proteases. Our recent studies provided evidence that the cellular protease TMPRSS2 is essential for influenza virus spread in mice and primate respiratory epithelium, indicating that TMPRSS2 is an attractive target for antiviral intervention. Therefore, our future work seeks to define the antiviral activity of TMPRSS2 inhibitors in non-human primates. The interferon system constitutes the first barrier against virus infection. A second focus of our studies is on the question how antiviral effector proteins of the interferon system inhibit viral spread and how viruses counter their antiviral activity. To answer this question, we employ siRNA and CRISPR/Cas9 approaches, life cell imaging, reporter viruses, genetic analyses and ex vivo cultures of primate organs.

Another goal of the Infection Biology Unit is the diagnosis of viral infections of non-human primates. Transmission of herpes B virus from macaques to humans and transmission of herpes B-related viruses between non-human primates can result in fatal disease. Therefore, our work is focused on establishing herpes virus diagnostics.

Selected Recent Publications

Peter Rehling

Professor, Director of the Dept. of Cellular Biochemistry

- 1996 Dr. rer. nat. (Biology), University of Bochum
- 1996 – 1998 Postdoctoral fellow (Laboratory of W.-H. Kunau, Bochum)
- 1998 – 2000 Postdoctoral fellow (S.D. Emr, HHMI, University of California San Diego, USA)
- 2000 – 2004 Research Group leader at the Institute for Biochemistry and Molecular Biology, Freiburg
- 2003 Habilitation (Biochemistry and Molecular Biology), University of Freiburg
- 2004 – 2007 Assistant Professor Institute for Biochemistry and Molecular Biology, Freiburg
- Since 2007 Professor of Biochemistry and Director of the Dept. of Biochemistry II University of Göttingen
- Since 2009 Speaker of the Study Section “Molecular Cell Biology” of the German Society for Biochemistry and Molecular Biology (GBM)
- Since 2010 Group associated with the Max Planck Institute for Biophysical Chemistry

Major Research Interests

We are interested in understanding the molecular mechanisms by which proteins are transported across the mitochondrial membranes and to find out how multi-protein complexes in the inner membrane (TIM complexes; translocation machineries of the inner membrane) mediate this task. In another aspect of our work we addresses the question how newly imported proteins assemble into multi-protein complexes in the inner membrane. In case of the respiratory chain complexes the assembly process is especially demanding since central subunits of the complexes are made within mitochondria. Dedicated chaperone-like factors are required to assist and regulate assembly and translation in mitochondria. The analysis of the principles of the biogenesis process and the activities of the assembly factors is of central importance for our understanding of the molecular basis of human mitochondrial disorders.

Selected Recent Publications

Silvio Rizzoli

Group Leader STED Microscopy of Synaptic Function

- 2000 – 2004 Research assistant with William Betz at the Dep. of Physiology and Biophysics, University of Colorado Health Sciences Center (USA)
- 08/2004 PhD degree (Physiology) awarded by the University of Colorado
- 2004 – 2007 Post doctoral fellow with Reinhard Jahn at the Neurobiology
- Department of the Max Planck Institute for Biophysical Chemistry in Göttingen (Germany)
- since 2007 Group Leader (STED Microscopy) at the European Neuroscience Institute Göttingen (ENI-G)

Major Research Interests

Conventional fluorescence microscopy is limited by the diffraction of light: fluorescent objects that are close together cannot be discerned. Stimulated emission depletion (STED) is a recent advancement in optical physics that breaks the diffraction barrier, allowing microscopes to obtain much clearer images. The diffraction barrier has been particularly problematic for imaging synaptic vesicles, which are among the smallest known organelles (30-50 nm in diameter). They are located in small areas in the synapses (about 1 micron in diameter). The group takes advantage of the increased imaging resolution provided by STED to investigate synaptic vesicle function, with an emphasis on synaptic vesicle recycling. Since STED microscopy also allows imaging of protein domains, the group aims at studying the patterning of protein domains in the synapse, in order to understand its molecular architecture.

Selected Recent Publications

Marina Rodnina

Professor of Biochemistry

- PhD, Institute of Molecular Biology and Genetics, Academy of Science Ukraine, Kiev, Ukraine, 1989
- Research Fellow of the Alexander von Humboldt Foundation, University of Witten, Germany, 1990 – 1992
- Research Fellow at the Institute of Molecular Biology, University of Witten/Herdecke, 1992 – 1998
- Associate Professor for Physical Biochemistry at the Institute of Molecular Biology, University of Witten/Herdecke, 1998 – 2000
- Full Professor, Head of the Institute of Physical Biochemistry, University of Witten/Herdecke, 2000 – 2008
- Director of Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, since 2008

Major Research Interests

1. Ribosome function and dynamics
2. Regulation and fidelity of translation
3. Ribosome-catalyzed reactions

Protein synthesis from amino acids in the cell is performed on ribosomes, large ribonucleoprotein particles that consist of several RNA molecules and over 50 proteins, augmented by auxiliary translation factors. One important unresolved question is the relation between the speed and fidelity of protein synthesis, which are two fundamental parameters that define viability and fitness of cells. While normal decoding is very accurate, in special cases the ribosome can overcome the rules of normal translation to recode parts of the genome in an alternative way. Incorporation of unusual amino acids, such as selenocysteine, requires highly specialized machinery for delivery. Understanding the movement of tRNAs and mRNA through the ribosome remains a major challenge. Finally, the processivity of the ribosome on the mRNA track, discontinuous translation and vectorial co-translational protein folding are open challenging questions. We investigate translation using a combination of techniques from Biochemistry, Structural Biology and Physical Biochemistry. Development of highly efficient and controlled ribosome translation systems on a highly sophisticated technological level is important for production of proteins with desired properties for purposes of proteomics and high-throughput structural studies emerging in the post-genomic era. The translational apparatus is a major target for antibiotics. Better understanding of the mechanisms of antibiotic action, resistance mechanisms and the interplay between resistance and bacterial fitness will be increasingly important for developing new antimicrobials and combating the major infectious diseases.

Selected Recent Publications

Melina Schuh

Director at the Max Planck Institute for Biophysical Chemistry

• 2004 Diploma in Biochemistry, University of Bayreuth, Germany
• 2004 – 2008 Ph.D. Student, Laboratory of Jan Ellenberg, EMBL Heidelberg, Germany
• 2008 Dr. rer. nat., University of Heidelberg and EMBL Heidelberg, Germany
• 2009 – 2010 Senior Investigator Scientist, MRC LMB, Cambridge, UK
• 2010 – 2014 Programme Leader Track, MRC LMB, Cambridge, UK
• 2014 – 2015 Programme Leader (Tenured), MRC LMB, Cambridge, UK
• since 2016 Director of the Department of Meiosis, MPI for Biophysical Chemistry, Göttingen, Germany

Major Research Interests

We study meiosis in mammalian oocytes, the progenitor cells of eggs. This topic is of great interest for fundamental research because meiosis is still much more poorly understood than mitosis, especially in mammals. It is also of direct medical relevance because defects in eggs are the leading cause of pregnancy loss and several congenital disorders such as Down’s syndrome. Our main aim is to understand how defects at the interface between chromosomes and cytoskeletal structures lead to aneuploid eggs and pregnancy loss in mammals. To this end, we study how the meiotic spindle is organized, how it segregates the chromosomes and how the spindle interacts with actin to drive the meiotic divisions. To have a solid foundation for future research, we are also developing new tools to study meiosis in mammalian oocytes. For instance, we have been able to carry out the first high content screen for meiotic genes in mammals. We have also been able to establish methods that now allow us for the first time to study the causes of chromosome segregation errors directly in live human oocytes. This has opened an exciting new area of research in my laboratory that we plan to expand significantly in the future.

Selected Recent Publications

Blanche Schwappach

Professor, Director of Molecular Biology

- 1996 Dr rer nat (Biology), Centre for Molecular Neurobiology (ZMNH), University of Hamburg
- 1997 – 2000 Postdoctoral fellow (Laboratory of Lily Jan, University of California, San Francisco, USA)
- 2000 – 2007 Research group leader at the Centre for Molecular Biology (ZMBH), University of Heidelberg
- 2004 Habilitation (Molecular Biology and Cell Biology) at the ZMBH
- 2007 – 2010 Wellcome Trust Senior Research Fellow, Faculty of Life Sciences, University of Manchester, UK
- since 2010 Professor of Biochemistry and Director of Molecular Biology
- since 2010 the group is associated with the Max Planck Institute for Biophysical Chemistry

Major Research Interests

The group works on different aspects of membrane protein biogenesis and its integration into the physiology of organs such as the brain or the heart. We study the early life of tail-anchored proteins that are post-translationally targeted to the endoplasmic reticulum for membrane integration. Other projects address the role of sorting motifs during the passage of ion channels and neurotransmitter receptors through the secretory pathway. One channel under investigation (the KATP channel) couples cellular metabolism to insulin secretion in pancreatic beta cells. In the brain and the heart KATP channels play less defined roles that we currently address employing biochemical methods. We study biogenesis and trafficking under (patho)physiological conditions in genetically tractable model organisms such as yeast or mouse. Besides membrane protein biochemistry we use GFP-based physiological sensors for small molecules and ions in cellular compartments. This allows us to tackle how ion channels and transporters contribute to different physicochemical milieu inside cells.

Selected Recent Publications

Halyna Shcherbata

Max Planck Research Group Leader

- 1996 Ph.D., Genetics, Kyiv Institute for Plant Physiology and Genetics, Ukraine
- 1996 – 2003 Scientific Researcher, then Assistant Professor, Lemberg (Lviv) National University, Ukraine
- 2003 – 2008 Postdoc, then Research Professor, Biochemistry Department, Institute for Stem cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- 2008 – present Max Planck Research Group Leader, MPI for Biophysical Chemistry, Göttingen, Germany
- 2012 Habilitation in Developmental Biology, Georg-August University, Göttingen, Germany

Major Research Interests

My lab is focused on understanding of biological roles of miRNAs in cell differentiation and maintenance under normal, stress, and disease conditions in Drosophila. We show that the miRNAs-based regulatory network is accomplished via feedback-feedforward signaling, which allows to reduce transcriptional noise and fine-tune gene expression to regulate the entire gene expression profile. In addition, tissue-specific miRNAs direct differentiation toward corresponding lineages by suppressing alternative cell fates and ensuring the robustness of cell identity. Under stress and in chronic pathological states, miRNA levels are misregulated which disrupts tissue regeneration and homeostasis due to miRNA influence on cell proliferation and differentiation programs. We found that miRNAs act as spatio-temporal cell fate determinants, differentiation guardians and canalization factors, and stress response elements. We use Drosophila as a model organism that can serve as a valuable model system for conserved mechanisms underlying human disorders. One of our scientific interests is the analysis of the Dystrophin Glycoprotein Complex (DGC), perturbation in which results in muscular dystrophies and brain abnormalities in humans. We found that stress induces muscle degeneration even in wild type animals and accelerates age-dependent muscular dystrophy. In view of the facts that miRNAs have been implicated in stress response and the DGC has an effect on miRNA expression in vertebrates, we have conducted a miRNA microarray screen in stressed and not stressed wild type and dystrophic animals. The second line of the research that is actively conducted in my lab is focused on studying the role of the microRNA pathway in stem cells, where the Drosophila germline and neuronal stem cells are used as model systems. Our findings show that hormonal signaling and miRNAs direct neuronal and germ-line stem cell differentiation. Not only do steroid hormones control the miRNA expression, miRNAs also act in feedback loops to regulate the strength of the hormonal signaling. This provides the means to fine-tune the signals managing stem cell division, maintenance, and differentiation in response to ever-changing extracellular conditions.

Selected Recent Publications

Yatsenko AS, Marrone AK, Shcherbata HR (2014) miRNA-based buffering of the cobblestone-lissencephaly-associated extracellular matrix receptor dystroglycan via its alternative 3'-UTR'. Nature Communications 5: 4906
Johannes Söding

Research Group Leader at the Max Planck Institute for Biophysical Chemistry

- 1988 –1994 Studies of physics and maths at Universities of Munich (LMU), Sussex (UK), and Heidelberg
- 1992 Diploma in physics at the University of Heidelberg
- 1994 – 1997 PhD thesis work with Rudi Grimm at the Max-Planck-Institute for Nuclear Physics in Heidelberg
- 1996 PhD in physics at the University of Heidelberg
- 1999 – 2002 Strategy management consultant for the Boston Consulting Group in Frankfurt
- 2002 – 2007 Staff scientist with Andrei Lupas at the Max-Planck-Institute for Developmental Biology in Tübingen
- 2007 – 2013 Group leader at the Gene Center and Department of Biochemistry, University of Munich (LMU)
- Since 2014 Group Leader of the Computational Biology Group at the Max Planck Institute of Biophysical Chemistry

Major Research Interests

We are interested in two broad areas of research. First, we develop computational methods for predicting the structure, function, and evolution of proteins from sequence. We develop statistical methods that enable us to make use of the vast amount of sequence information that is becoming available at an ever-increasing pace. The goal is to provide life scientists with more and more powerful tools for predicting the functions and structures of proteins in order to guide their experimental work.

Second, we want to understand how transcriptional regulation, which represents the most important level of cellular regulation, is encoded in each gene’s regulatory regions. We develop computational methods to analyse regulatory sequences and to detect regulatory motifs. We also want to predict transcription rates, using probabilistic modeling, statistical physics, and machine learning techniques. We collaborate extensively with experimental groups to elucidate the molecular processes regulating transcription initiation, elongation, mRNA processing, and chromatin states.

Selected Recent Publications

Holger Stark

Professor, Director at the Max Planck Institute for Biophysical Chemistry

- 1996 Dr. rer. nat. (Biochemistry) Free University of Berlin
- 1997 – 1998 Postdoc (Laboratory of Marin van Heel, Imperial College, London)
- 1998 – 1999 Junior group leader, University of Marburg
- 2000 – 2004 Junior group leader, MPI for Biophysical Chemistry
- 2005 – BioFuture group leader, MP for Biophysical Chemistry
- 2005 – 2007 BioFuture group leader
- since 2007 Professor for Molecular Electron Cryomicroscopy, University Göttingen and group leader, MPI for Biophysical Chemistry
- since 2015 Director, Dept. Structural Dynamics, MPI for Biophysical Chemistry

Major Research Interests

The work in our group is focused on 3D structure determination of large macromolecular complexes by single particle electron cryomicroscopy (cryo-EM). In cryo-EM, thousands of electron microscopical images of a macromolecular complex are taken at low temperature in the electron microscope and are used to calculate a 3D reconstruction of the object by computational image processing. Electron microscopical images can be considered as almost ideal two-dimensional projection images, similar to images obtained by computer tomography in medical applications. However, in cryo-EM the relative orientation of the molecules is a priori unknown and must be determined by computational means prior to calculating the 3D structure.

Cryo-EM is the method of choice for 3D structure determination of macromolecular complexes that are difficult to purify in the amounts and quality that is required for crystallization (X-ray crystallography). Due to the low copy number of many functionally important macromolecular complexes in the cell, cryo-EM is very often the only available method to study the 3D structure of these large macromolecules. Work in our group concentrates on macromolecular complexes related to pre-mRNA splicing, translation and cell cycle regulation and on the development of new methods to improve sample preparation, imaging and computational image processing techniques

Selected Recent Publications

Alexander Stein

Group Leader at the Max Planck Institute for Biophysical Chemistry

- 2008 Dr. rer. nat, Free University of Berlin and MPI for Biophysical Chemistry
- 2008 – 09 Postdoctoral Fellow at the MPI for Biophysical Chemistry
- 2010 – 14 Postdoctoral Fellow at Harvard Medical School (Boston, USA)
- since 2014 Otto Hahn Group Leader

Major Research Interests

The removal of misfolded proteins is an essential process in all cells. Failure to discard such proteins often results in disease. A particularly intriguing process serves to discard misfolded proteins from the endoplasmic reticulum (ER). The ER does not itself degrade proteins, so a machinery has evolved that moves misfolded proteins into the cytosol where they can be degraded by the proteasome. This retro-translocation process is called ERAD (for ER-associated protein degradation) and is conserved in all eukaryotes. Besides its function in the removal of misfolded proteins, it plays an important role in the controlled degradation of metabolic enzymes, like the ones involved in sterol biosynthesis. The ERAD pathway is also co-opted by certain viruses (e.g. Human cytomegalovirus) and bacterial toxins (e.g. cholera toxin).

Compared to other membrane translocation processes, the mechanism of ERAD is still poorly understood. How are misfolded proteins distinguished from folding intermediates? How are proteins moved across the membrane? How are they extracted from the membrane? How is the energy for membrane translocation provided? The aim of our research is to provide answers to these fundamental questions. To study the mechanism of ERAD we use the budding yeast Saccharomyces cerevisiae as a model organism. We take a bottom-up approach and try to understand the mechanism of ERAD by reconstituting the entire process with purified individual components. These experiments will be complemented by studies in intact yeast cells.

In a second project, we investigate an ERAD-like process that moves proteins into the apicoplast, a plastid-like organelle in unicellular parasites, like the malaria parasite Plasmodium falciparum. The apicoplast performs metabolic reactions essential for the parasite’s survival, which include the synthesis of lipid precursors, heme and iron-sulfur clusters. The apicoplast is the target of many antimalarial drugs. We hope that a better understanding of its cell biology will facilitate the development of new drugs against malaria.

Selected Recent Publications

Claudia Steinem

Professor of Biophysical Chemistry

- 1987 – 1989 Studies of Biology at the University of Münster
- 1989 – 1994 Studies of Chemistry at the University of Münster
- 1994 – 1997 PhD thesis under supervision of Prof. Dr. H.-J. Galla
- 1997 – 1998 Postdoctoral Researcher at the Scripps Research Institute (La Jolla, California, USA)
- 1999 – 2001 Habilitation in Biochemistry at the University of Münster
- 2001 – 2006 Associate professor (C3) for Bioanalytics and Biosensors at the University of Regensburg
- 2006 Full professor (W3) for Biomolecular Chemistry at the University of Göttingen

Major Research Interests

Development and application of new artificial membrane systems based on highly ordered porous substrates; transport processes across membranes; protein-membrane and protein-cytoskeleton interactions; membrane fusion and –fission; membrane-confined silica formation in diatoms.

Selected Recent Publications

Jörg Stülke

Professor of Microbiology

- 1990 Diploma (Biology), Ernst-Moritz-Arndt-Universität Greifswald
- 1994 Dissertation (Dr. rer. nat.), Ernst-Moritz-Arndt-Universität Greifswald
- 1994 – 1996 Postdoctoral Fellow at the Institut Pasteur, Paris
- 1996 – 2003 Group leader at the Chair of Microbiology, University Erlangen-Nürnberg
- 2000 Habilitation (Microbiology), University Erlangen-Nürnberg
- Since 2003 Professor of General Microbiology, Head of the Department of General Microbiology at the Institute of Microbiology and Genetics, University of Göttingen

Major Research Interests

Our group studies the regulation of metabolism in the pathogenic bacterium *Mycoplasma pneumoniae* and the model organism *Bacillus subtilis*. We are following global (“post-genomic”) and gene-specific approaches. In *Mycoplasma pneumoniae*, we study the regulation of gene expression in this pathogenic bacterium and its relation to pathogenicity. This is highly interesting because this bacterium is an important cause of pneumonia. Moreover, *M. pneumoniae* is one of the organisms with the smallest genetic equipment that is capable of independent life. Understanding *M. pneumoniae* means understanding life! Specifically, we are analysing protein phosphorylation and mechanisms of transcription regulation in *M. pneumoniae*. We have shown, that protein phosphorylation of is of key importance for pathogenicity of *M. pneumoniae*. Metabolism in *Bacillus subtilis* is studied by transcriptomics, metabolome and fluxome analyses. Our specific interests are focussed on two key pathways: glycolysis and glutamate biosynthesis, the decisive link between carbon and nitrogen metabolism. The regulation of glycolysis is studied at the level of a controlled protein-RNA interaction. Regulation through RNA has become widely recognized in the past few years. Our studies revealed that glycolytic enzymes themselves are part of a protein complex that is required for mRNA processing and degradation. Finally, we are interested in systems biology approaches to the analysis of *B. subtilis* and develop web interfaces for the functional annotation.

Selected Recent Publications

Michael Thumm

Professor of Biochemistry and Molecular Cell Biology
• Center of Biochemistry and Molecular Cell Biology, University of Göttingen
• 1987 Dr. rer. nat., University of Stuttgart
• 1997 Habilitation (Biochemistry), University of Stuttgart

Major Research Interests
We are studying the molecular mechanism of autophagy in the yeast *Saccharomyces cerevisiae*. Autophagy is a starvation induced transport pathway, which delivers cytosolic material for degradation to the lysosome (vacuole). It is highly conserved in all eukaryotes from yeast to human and helps the cells to survive periods of nutrient limitation.

Autophagy further plays an important role in ageing, the development of breast cancer and cardiomyopathy and it was linked to neurodegenerative diseases like Alzheimer’s, Huntington’s and Parkinson’s disease. Autophagy is mechanistically unique, since its transport intermediates, the autophagosomes, are surrounded by two individual membranes. It starts at the newly-discovered preautophagosomal structure, where autophagosomes are formed. Autophagosomes unspecifically enclose parts of the cytoplasm including organelles like mitochondria, peroxisomes and parts of the ER.

When the autophagosomes reach the vacuole, their outer membrane-layer fuses with the vacuolar membrane and a still membrane-enclosed autophagic body is released into the vacuolar lumen. In the vacuole autophagic bodies are lysed and broken down together with their cytosolic content. The intravacuolar breakdown of autophagic bodies requires the selective lysis of their limiting membrane. Due to the use of two limiting membranes the biogenesis of autophagosomes is a very unique process. Molecular dissection of this process is one of our main areas of research.

Selected Recent Publications

Roswitha Krick, Ricarda A Busse, Andreea Scacioc, Milena Stephan, Andreas Janshoff, Michael Thumm*, Karin Kühnel* (2012) Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. PNAS 109(30): E2042-9 *corresponding author

Usha Nair, Michael Thumm*, Daniel J Klionsky*, and Roswitha Krick (2011) GFP-Atg8 protease protection as a tool to monitor autophagosome biogenesis. AUTOPHAGY 7 (12): 1546-1550 *corresponding author

Kai Tittmann

Professor of Bioanalytics

- Diploma (Biochemistry), Martin-Luther-University, Halle/Saale (Germany), 1996
- Dr. rer. nat., Martin-Luther-University, Halle/Saale (Germany), 2000
- Postdoc, Institute for Biochemistry, MLU Halle-Wittenberg, Halle/Saale (Germany), 2001 – 2002
- Jun.-Prof. of Molecular Enzymology, Institute for Biochemistry, MLU Halle-Wittenberg, Halle/Saale, (Germany), 2003 – 2008
- Invited Research Scientist at Rutgers University, Newark, NJ, USA, 2003
- Associate Guest Professor, Ben-Gurion-University of the Negev, Beer-Sheva, IL, 2006
- Since 2008 Professor of Bioanalytics, Georg-August-University, Göttingen (Germany)
- Awards: Dorothea-Erxleben-Prize (best doctoral thesis), 2001
- Prize for excellent basic research at Saxony-Anhalt, 2005

Major Research Interests

The central research topic of our department is the analysis of molecular reaction mechanisms of enzymes as nature’s chemical catalysts. In this context, we study enzymes with vitamin-derived cofactors, with metal ions, and Schiff base-forming enzymes. A particular focus is laid on the structural and kinetic characterization of enzymatic reaction intermediates by high-resolution X-ray crystallography, steady-state and transient kinetic methods, NMR spectroscopy and theoretical studies. Knowledge about the reaction mechanism is exploited to redesign enzymes for biocatalytic applications and for drug design.

Selected Recent Publications

Henning Urlaub

Group Leader - Bioanalytical Mass Spectrometry Group

- from 2010: Group leader “Bioanalytical Mass Spectrometry” group at the Max Planck Institute for Biophysical Chemistry, Göttingen and “Bioanalytics” group at University Medical Center Göttingen (UMG) within Institute for Clinical Chemistry
- 2010: Professor at the Faculty of Medicine at Georg August University Göttingen
- 2005: Research group “Bioanalytical Mass Spectrometry Group” at the Max Planck Institute for Biophysical Chemistry
- 2000 – 2001: Guest researcher at the EMBL in Heidelberg, Germany, in the group of Dr. Matthias Wilm
- 1997 – 2004: Post-Doc at the “Institut für Molekularbiologie und Tumorsforschung” (IMT) of the Philipps University of Marburg, Germany (Group of Reinhard Lührmann) and at the Max Planck Institute for Biophysical Chemistry in Göttingen (Group of Reinhard Lührmann)
- 1993 – 1996 Ph.D. and Post-Doc in the research group of Prof. Brigitte Wittmann-Liebold at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin
- 1992 – 1993 Diploma thesis in the research group of Prof. Volker A. Erdmann at the Institute of Biochemistry of the Free University of Berlin
- 1987 – 1993 Studied biochemistry at the Free University of Berlin, Germany

Major Research Interests

Modern mass-spectrometric methods have become key technologies in the life sciences. We apply “state-of-the-art” mass spectrometry to elucidate quantitative changes of proteins and their post-translational modifications derived from different samples, including tissue, cells, organelles, and cell compartments. In addition we apply mass spectrometric methods to monitor interactions and dynamic changes of protein and protein-ligand complexes through use of crosslinking and chemical probing.

Selected Recent Publications

Lutz Walter

Head of Department of Primate Genetics at the German Primate Center

- Dr. rer. nat. (PhD), University of Göttingen, 1994
- Postdoctoral fellow and group leader at the Division of Immunogenetics, University of Göttingen, 1994 – 2004
- Head of Department of Primate Genetics, German Primate Center, Göttingen, since 2004
- Habilitation (Immunology and Immunogenetics), Medical Faculty of the University of Göttingen, 2005
- apl Professor, Medical Faculty of the University of Göttingen, 2009

Major Research Interests

Natural killer (NK) cells belong to the lymphocyte lineage and represent an essential part of the innate immune system. NK cells can kill other cells and secrete substantial amounts of cytokines. Signals from activating and inhibitory NK cell receptors are integrated and regulate the activity of NK cells. Typical targets for NK cell killing are virus-infected or malignant cells, which both frequently reveal changed patterns of ligand expression on their cell surface. Such changes are recognised by NK cells, leading to killing of virally infected or transformed cells. NK cells can also be activated by different stimuli during interaction with dendritic cells, leading to release of pro-inflammatory cytokines and anti-viral substances. Due to these properties, NK cells play also important roles in autoimmune diseases, transplantation, and reproduction. Recently, NK cells were shown to possess immunological memory. Our interests lie in biology and genetics of natural killer (NK) cells, including regulation of NK cell receptor gene transcription, specific interactions of NK cell receptors and MHC class I ligands, regulation of NK cell activation, NK cell transcriptomics and the role of long noncoding RNA in NK cell development.

A further focus of our research is genomics of nonhuman primates with phylogenetic, demographic, evolutionary, and bioinformatic analyses.

Methods: single-cell RNA sequencing, single-cell qRT-PCR, flow cytometry, next-generation sequencing, bioinformatic analysis tools.

Selected Recent Publications

Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L (2014) Progression to AIDS in SIV-infected rhesus macaques is associated with distinct KIR and MHC class I polymorphisms and NK cell dysfunction. Front Immunol 5: 600

Jürgen Wienands

Professor of Cellular and Molecular Immunology

- 1982 – 89 Study of Biology at the University of Cologne; graduated at the Institute of Genetics, Dept. of Immunology
- 1989 – 92 Ph.D. project at the Max Planck Institute for Immunobiology, Freiburg, Germany
- 1992 – 94 Postdoctoral fellow at the Dept. of Preclinical Research at Sandoz Pharma Ltd., Basel, Switzerland
- 1994 – 96 Postdoctoral fellow at the Max Planck Institute for Immunobiology, Freiburg, Germany
- 1996 – 2001 Group leader at the University of Freiburg, Institute of Biology III
- 2001 “Habilitation” and Venia Legendi in “Molecular Immunology and Biochemistry”
- 2001 – 2004 Full Professor for “Biochemistry and Molecular Immunology” at the University of Bielefeld
- since August 2004 Full Professor for “Molecular and Cellular Immunology” at the University of Göttingen
- 2015 – 2016 President of the German Society for Immunology (DGfI)

Major Research Interests

The signature structure of B lymphocytes is their clonotypic antigen receptor (BCR), which recognizes extracellular pathogens or toxins, and consequently initiates their combating by soluble antibodies. Our research focuses on how the ligated BCR activates intracellular signaling pathways upon primary and secondary antigen encounter. Our studies showed that BCR classes expressed on antigen-experienced, so-called memory B cells, possess a signal amplification mechanism that lowers the BCR signaling threshold compared to newly generated B cells. This finding provides a molecular explanation for immunological memory which is the fundamental basis for successful vaccination strategies. We also identified key effector proteins of the BCR such as SLP-65 or CIN85. They function as adaptor proteins which nucleate the formation of multi-molecular protein complexes to integrate and amplify BCR signals. Interference with expression or function of these effectors cause severe immunodeficiencies in mouse and man. To investigate these processes we apply cutting edge technologies of biochemistry and genetics including protein interaction studies, flow cytometry, targeted gene disruption in cell culture and embryonic stem cells followed by reconstitution experiments using electroporation techniques or retroviral gene transfer

Selected Recent Publications

for review see:

Ernst Wimmer

Professor of Developmental Biology

- 1991 Diplom (Biology), Ludwig Maximilians University, Munich (Germany)
- 1995 Dr. rer. nat., Max-Planck-Institute for Biophysical Chemistry, Göttingen (Germany) and Howard Hughes Medical Institute, Baylor College of Medicine, Houston (USA)
- 1995 – 1998 Postdoctoral Fellow and Associate, Howard Hughes Medical Institute, The Rockefeller University, New York (USA)
- 1998 – 2003 Assistant Professor and Robert Bosch Foundation ’Junior Professor’ Department of Genetics, University of Bayreuth, Bayreuth (Germany)
- Since 2003 Professor of Developmental Biology at the Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg August University, Göttingen (Germany)

Major Research Interests

Phylogenetic Variance and Plasticity of Developmental Processes. A key question in evolutionary developmental biology is how diverse animal body plans are specified. To identify the plasticity in developmental processes, we study their conservation and divergence in different arthropod species by transgenesis and functional genomics approaches. This will help us to understand how animal evolution is based on changes in gene regulation governing pattern formation and sex determination processes.

Smelling Beetles: Stink Glands and Odour Detection the Red Flour Beetle Tribolium castaneum. Beetles are prolific producers of repellent and/or toxic compounds. Defensive substances are usually multifunctional: as repellents, toxicants, insecticides, or antimicrobics, they are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. We are interested both in the development of these glands as well as their biochemical composition and biological function. The red flour beetle also offers a great system to address olfaction from the odour recognition and discrimination at the periphery to the analysis of the plasticity of the central olfactory pathway.

Applied Developmental Biology: Biotechnological improvements on the Sterile Insect Technique (SIT). SIT is a successful genetic pest management strategy to prevent, control, suppress, or even eradicate invasive insect pest species from islands, large agricultural production areas, or even complete continents. SIT is a species-specific and eco-friendly insect birth control measure involving mass production, sterilization, and sustained area-wide release of large quantities of sterilized insects. This leads to unproductive matings, which shrinks the population. Our current biotechnological efforts, which include transposon-based germ line transformation and CRISPR/Cas9-based genome editing improve on transgenic female-specific lethality systems to enable more efficient male-only releases, on reproductive sterility systems to overcome the problem of radiation-reduced fitness, and on transgenic markers to better monitor the efficacy of SIT applications.

Selected Recent Publications

Graduate Program Committee

Faculty
- Prof. Dr. Peter Rehling (Chair)
- Prof. Dr. Marina Rodnina (Dean)
- Prof. Dr. Claudia Höbartner
- PD Dr. Wilfried Kramer
- Prof. Dr. Stefanie Pöggeler
- Dr. Alexander Stein
- Prof. Dr. Kai Tittmann

Students
- Frank Richter
- Shama Sograte Idrissi
- Antony Grüness

GZMB Board Members

- Prof. Dr. Ralf Ficner (executive director)
- Prof. Dr. Jörg Stülke
- Prof. Dr. Claudia Steinem
- Prof. Dr. Markus Bohnsack
- Dr. Steffen Burkhardt
- Andreas Nolte

Students
- Lars Henning Hansen
- Julia Börke

Program Coordination

Molecular Biology Program

- Dr. Steffen Burkhardt (Program Coordinator)

Neuroscience Program

- Sandra Drube (Program Coordinator)

Further Information

- http://www.gpmolbio.uni-goettingen.de

Georg-August-Universität
Göttingen
Coordination Office
Molecular Biology
Justus-von-Liebig-Weg 11
37077 Göttingen
Germany

- phone: +49 – 551 – 39 12110 / 12111
- fax: +49 – 551 – 39 33811
- e-mail: gpmolbio@gwdg.de
Imprint

Publisher:
Coordination Offices Molecular Biology & Neurosciences,
Georg August University Göttingen

Text:
Dr. Steffen Burkhardt,
Prof. Dr. Michael Hörner

Cover Design and Page Layout:
bioGrafik (M. Nolte)

Photography:
Reprostelle MPI for Biophysical Chemistry (P. Goldmann)
Ingo Bulla Fotografie (Cover)